Two-dimensional correlation spectroscopy analysis of Raman spectra of NiO nanoparticles.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Physics, Ewha Womans University, Seodaemun-gu, Seoul, 03760, Korea. Electronic address:

Published: November 2022

AI Article Synopsis

  • The study examines the Raman spectra of NiO nanoparticles across temperatures from 100 to 300 K using two-dimensional correlation spectroscopy (2D-COS).
  • Findings indicate a strong link between variations in phonon spectral intensity and the magnetic ordering of the nanoparticles, with antiferromagnetic ordering influencing TO phonon anisotropy.
  • Results reveal significant spin-phonon coupling and highlight interactions between magnons, offering deeper insights into the phonon and magnon excitations in NiO nanoparticles.

Article Abstract

We report two-dimensional correlation spectroscopy (2D-COS) analyses of the Raman spectra of NiO nanoparticles over a temperature range from 100 to 300 K. 2D-Raman correlation spectra suggest strong correlation of the phonon spectral intensity variation with the magnetic ordering in NiO nanoparticles. It is revealed that the antiferromagnetic ordering affects the TO phonon anisotropy in NiO nanoparticles. We elucidate the complex spectral features of two-magnon (2 M) bands by performing appropriate 2D-COS model simulations. Significant spin-phonon coupling in NiO nanoparticles is supported by our results. High energy magnon-magnon interaction tails are also found to be involved in the spin-phonon coupling. 2D-COS analyses provide rich information regarding the nature of the phonon and magnon excitations of NiO nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121498DOI Listing

Publication Analysis

Top Keywords

nio nanoparticles
24
two-dimensional correlation
8
correlation spectroscopy
8
raman spectra
8
spectra nio
8
2d-cos analyses
8
spin-phonon coupling
8
nio
6
nanoparticles
6
spectroscopy analysis
4

Similar Publications

Nickel oxide nanoparticles are engineered particles that are now widely used in medicine, agriculture, and industry applications. This study aimed to investigate subchronic testicular toxicity induced by nickel oxide (NiO) and nickel oxide nanoparticles (NiONPs) in rats by comparing oral, intraperitoneal (IP), and intravenous (IV) routes of administration. Forty-two male Wistar rats were used for the study, and seven groups were formed: control group, NiO oral (150 mg/kg), NiO IP (20 mg/kg), NiO IV (1 mg/kg), NiONP oral (150 mg/kg), NiONP IP (20 mg/kg), and NiONP IV (1 mg/kg).

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Quantification of L-lactic acid in human plasma samples using Ni-based electrodes and machine learning approach.

Talanta

December 2024

NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:

This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).

View Article and Find Full Text PDF

The aquatic ecosystem is negatively impacted by organic dye contamination, which is now one of the factors leading to environmental pollution. The present investigation involved the synthesis of nanocellulose (NC) and nanocellulose modified with NiO (NC/NiO) composite using acid hydrolysis and a one-step precipitation technique for NC and NiO, respectively. Malachite green (MG) dye was catalytically removed from an aqueous solution using the two products, which were mechanically homogenized.

View Article and Find Full Text PDF

Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!