Although cell-derived matrices are at the forefront of scientific research and technological innovation for the development of in vitro tumour models, their two-dimensional structure and low extracellular matrix composition restrict their capacity to accurately predict toxicity of candidate molecules. Herein, we assessed the potential of macromolecular crowding (a biophysical phenomenon that significantly enhances and accelerates extracellular matrix deposition, resulting in three-dimensional tissue surrogates) in improving cell-derived matrices in vitro tumour models. Among the various decellularisation protocols assessed (NHOH, DOC, SDS/EDTA, NP40), the NP40 appeared to be the most effective in removing cellular matter and the least destructive to the deposited matrix. Among the various cell types (mammary, skin, lung fibroblasts) used to produce the cell-derived matrices, the mammary fibroblast derived matrices produced under macromolecular crowding conditions and decellularised with NP40 resulted in significant increase in focal adhesion molecules, matrix metalloproteinases and proinflammatory cytokines, when seeded with MDA-MB-231 cells. Further, macromolecular crowding derived matrices significantly increased doxorubicin resistance and reduced the impact of intracellular reactive oxygen species mediated cell death. Collectively our data clearly illustrate the potential of macromolecular crowding in the development of cell-derived matrices-based in vitro tumour models that more accurately resemble the tumour microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2022.121642 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!