Air pollution has emerged as a serious threat to human health due to close association with spectrum of chronic ailments including cardiovascular disorders, respiratory diseases, nervous system dysfunctions, diabetes and cancer. Exposure to air-borne pollutants along with poor eating behaviours and inferior dietary quality irreversibly impacts epigenomic landscape, leading to aberrant transcriptional control of gene expression which is central to patho-physiology of non-communicable diseases. It is assumed that nutriepigenomic interventions such as vitamins can control such adverse effects through their immediate action on mitochondrial epigenomic-axis. Importantly, the exhaustive clinical utility of vitamins-interceded epigenetic synchronization is not well characterized. Therefore, improving the current limitations linked to stability and bioavailability issues in vitamin formulations is highly warranted. The present review not only sums up the available data on the role of vitamins as potential epigenetic modifiers but also discusses the importance of nano-engineered vitamins as potential epidrugs for dietary and pharmacological intervention to mitigate the long-term effects of air pollution toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1515/reveh-2022-0027DOI Listing

Publication Analysis

Top Keywords

vitamins potential
12
potential epigenetic
8
air pollution
8
nano-engineered vitamins
4
epigenetic modifier
4
modifier environmental
4
environmental air
4
air pollutants
4
pollutants air
4
pollution emerged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!