Exploring micro-nano photonic crystals as nonlinear optical switching and optical limiting devices for Gaussian light fields with ultrashort pulse widths has attracted extensive research, mainly originating from its controllable modulation of the third/fifth-order nonlinear optical behavior and ultrafast carrier dynamics. In this work, Al-doped ZnO (AZO) films with controllable and excellent third-order nonlinear optical behavior have been uniformly deposited on quartz substrates by a single-step co-sputtering method. Al dopant-dependent ultrafast carrier dynamics and nonlinear optical properties in hexagonal ZnO films are discussed. The bonding mode of Al atoms in the ZnO lattice changed from substitutional to substitutional-decoration, which has been controllably achieved at different DC sputtering powers. The strain, crystallinity, grain size, dislocation density, and texture coefficient of the sample were quantitatively calculated by XRD and Raman spectroscopy, which confirmed that the phase parameters can be regulated by the sputtering power. In addition, Hall test and photoluminescence spectra showed the contribution of the donor level on the band structure and the electron transfer characteristics, which will provide a strategy for understanding multi-type carrier dynamics under strong light fields. The finite-difference time-domain method was used to simulate the linear optical absorption/transmittance of the sample under a plane-wave optical field, which proved that the light-matter interaction failed to be significantly suppressed by shading and scattering effects. The carrier relaxation process and nonlinear absorption/refractive effects were controllably optimized by dopant Al atoms, which were confirmed by -scan and transient absorption spectroscopy. Compared with pure ZnO films, the third-order nonlinear refraction and absorption coefficients of AZO-power films can reach -8.926 × 10 m W and -0.634 × 10 m W, respectively. AZO films with ultrafast carrier dynamics and controllable excellent third-order nonlinear optical coefficients can be used as all-optical switches and optical limiting devices, which provide a reference for advanced micro-nano optical materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr02279f | DOI Listing |
Sci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Optical Engineering, Utsunomiya University, 7-2-1 Yoto, Utsunomiya 321-8585, Japan.
We describe the various steps of a gas imaging algorithm developed for detecting, identifying, and quantifying gas leaks using data from a snapshot infrared spectral imager. The spectral video stream delivered by the hardware allows the system to combine spatial, spectral, and temporal correlations into the gas detection algorithm, which significantly improves its measurement sensitivity in comparison to non-spectral video, and also in comparison to scanning spectral imaging. After describing the special calibration needs of the hardware, we show how to regularize the gas detection/identification for optimal performance, provide example SNR spectral images, and discuss the effects of humidity and absorption nonlinearity on detection and quantification.
View Article and Find Full Text PDFMolecules
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.
A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Research Laboratory "Sensor Systems Based on Integrated Photonics Devices", Ufa University of Science and Technology, 32, Z. Validi St., Ufa 450076, Russia.
Radio photonic technologies have emerged as a promising solution for addressing microwave frequency synthesis challenges in current and future communication and sensing systems. One particularly effective approach is the optoelectronic oscillator (OEO), a simple and cost-effective electro-optical system. The OEO can generate microwave signals with low phase noise and high oscillation frequencies, often outperforming traditional electrical methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!