To realize the efficient differential sensing of phenolic pollutants in sewage, a novel sensing strategy was successfully developed based on a nanozyme (GMP-Cu) with polyphenol oxidase activity. Phenolic pollutants can be oxidized using GMP-Cu, and the oxidation products reacts subsequently with 4-aminoantipyrine to produce a quinone-imine compound. The absorption spectra of final quinone-imine products that resulted from different phenolic pollutants showed obvious differences, which were due to the interaction difference between GMP-Cu and phenolic pollutants, as well as the different molecular structures of the quinone-imine products from different phenolic pollutants. Based on the difference in the absorption spectra, a novel differential sensing strategy was developed. A genetic algorithm was used to select the characteristic wavelengths at different enzymatic reaction times. Hierarchical cluster analysis and PLS-DA algorithms were utilized for the discriminant sensing of seven representative phenolic pollutants, including hydroquinone, resorcinol, catechol, resorcinol, phenol, p-chlorophenol, and 2,4-dichlorophenol. A scientific wavelength selection algorithm and a recognition algorithm resulted in the successful identification of phenolic pollutants in sewage with a discriminant accuracy of 100%, and differentiation of the phenolic pollutants regardless of their concentration. These results indicated that a sensing strategy can be used as an effective tool for the efficient identification and differentiation of phenolic pollutants in sewage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.4313 | DOI Listing |
Sci Rep
December 2024
Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics, which has risks for human health. This study aimed to investigate BPA contents in canned fruit and vegetable samples using Gas Chromatography-Mass Spectrometry (GC-MS). Furthermore, health risks were assessed for Iranian adults and children using Monte Carlo simulations.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Physical Chemistry-Ilie Murgulescu of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania.
Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia.
Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.
View Article and Find Full Text PDFChemSusChem
December 2024
University of Southern Denmark: Syddansk Universitet, Department of Physics, Chemistry and Pharmacy, DENMARK.
We are facing a world-wide shortage of clean drinking water which will only be further exacerbated by climate change. The development of reliable and affordable methods for water remediation is thus of utmost importance. Chlorine (which forms active hypochlorites in solution) is the most commonly used disinfectant due to its reliability and low cost.
View Article and Find Full Text PDFFront Microbiol
December 2024
CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
Phenol is one of the major organic pollutants in high salt industrial wastewater. The biological treatment method is considered to be a cost-effective and eco-friendly method, in which the co-culture of microalgae and bacteria shows a number of advantages. In the previous study, a co-culture system featuring () and () was established and could degrade 400 mg L phenol at 3% NaCl concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!