The applicability of chitin-based carbon as a supercapacitor electrode material was investigated by adjusting its pore structure through polystyrene latex templating, without significant N doping. 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-oxidized chitin nanofibers were mixed with polystyrene latex, hydrothermally treated at 220 °C, carbonized, and activated using KOH at 800 °C, yielding activated hierarchical porous carbon. The variation of both polystyrene latex amount and carbonization temperature resulted in changes in the surface area and pore structure, which dictated the degree of pore uniformity and activation efficiency. The pore structure affected activation by allowing the selective removal of amorphous carbon, exposing the basal plane carbon, resulting in higher specific capacitance. By making activated hierarchical porous carbon more conducive to activation, specific capacitance of 567 F g at 0.5 A g was achieved, with no loss in performance after 10000 charge-discharge cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202200932DOI Listing

Publication Analysis

Top Keywords

porous carbon
12
specific capacitance
12
pore structure
12
polystyrene latex
12
activated hierarchical
8
hierarchical porous
8
carbon
6
porosity-induced improvement
4
improvement koh
4
activation
4

Similar Publications

Pore-Controllable Synthesis of Phthalic Acid-Derived Hierarchical Activated Carbon for Dilute CO Capture.

Inorg Chem

December 2024

Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.

Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.

View Article and Find Full Text PDF

Portable Amperometric Biosensor Enhanced with Enzyme-Ternary Nanocomposites for Prostate Cancer Biomarker Detection.

Biosensors (Basel)

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.

Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported.

View Article and Find Full Text PDF

Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline.

Biosensors (Basel)

November 2024

Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.

Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO NGs and construct a cascade reaction system to detect choline.

View Article and Find Full Text PDF

The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.

View Article and Find Full Text PDF

Currently, materials with specific, strictly defined functional properties are becoming increasingly important. A promising strategy for achieving these properties involves developing methods that facilitate the formation of hierarchical porous materials that combine micro-, meso-, and macropores in their structure. Macropores facilitate effective mass transfer of substances to the meso- and micropores, where further adsorption or reaction processes can occur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!