Cerebrovascular reactivity (CVR) is the capacity of blood vessels in the brain to alter cerebral blood flow (either with dilation or constriction) in response to chemical or physical stimuli. The amount of reactivity in the cerebral microvasculature depends on the integrity of the capacitance vasculature and is the primary function of endothelial cells. CVR is, therefore, an indicator of the microvasculature's physiology and overall health. Imaging methods that can measure CVR are available but can be costly, and require magnetic resonance imaging centers and technical expertise. In this study, we used fNIRS technology to monitor changes of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in the cerebral microvasculature to assess the CVR of 15 healthy controls (HC) in response to a vasoactive stimulus (inhaled 5% carbon dioxide or CO2). Our results suggest that this is a promising imaging technology that offers a non-invasive, accurate, portable, and cost-effective method of mapping cortical CVR and associated microvasculature function, resulting from a traumatic brain injury or other conditions associated with cerebral microvasculopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189107 | PMC |
http://dx.doi.org/10.3791/61284 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.
Obtaining the arterial input function (AIF) is essential for quantitative regional cerebral perfusion (rCBF) measurements using [O]HO PET. However, arterial blood sampling is invasive and complicates the scanning procedure. We propose a new non-invasive dual scan technique with an image derived input function (IDIF) from an additional heart scan.
View Article and Find Full Text PDFRheumatol Int
January 2025
Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria.
Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by systemic inflammation. While RA primarily affects the joints, its systemic effects may lead to an increased cerebro- and cardiovascular risk. Atherosclerosis of the carotid arteries is a significant risk factor for cerebrovascular events and serves as a surrogate marker for cardiovascular risk.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309.
: Cerebrovascular disease and dementia risk increases with age and lifetime risk is greater in women. Cerebrovascular dysfunction likely precedes cerebrovascular disease and dementia but the mechanisms are incompletely understood. We hypothesized that oxidative stress mediates cerebrovascular dysfunction with human aging.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Faculty of Medicine, Alzaiem Alazhari University, Khartoum, Sudan.
Introduction: Giant cell arteritis (GCA) is a common vasculitis predominantly affecting larger vessels, especially in individuals aged 70-79. Cerebrovascular ischemic events (CIE), such as stroke and transient ischemic attacks, are serious but rare complications of GCA, with a pooled prevalence of 4%. Some studies found that within 2 weeks of GCA diagnosis, 74% and 34% of patients experience transient or severe ischemic events, respectively.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of General Practice, Shanghai Xuhui Central Hospital, Shanghai, China.
Background: Ischemic stroke (IS) is a common cerebrovascular disease. Although the formation of atherosclerosis, which is closely related to oxidative stress (OS), is associated with stroke-related deaths. However, the role of OS in IS is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!