Comparing Deflazacort and Prednisone in Duchenne Muscular Dystrophy.

J Neuromuscul Dis

University of California Davis Health, Departments of Physical Medicine & Rehabilitation and Pediatrics, Lawrence J. Ellison Ambulatory Care Center, Sacramento, CA, USA.

Published: July 2022

Deflazacort and prednisone/prednisolone are the current standard of care for patients with Duchenne muscular dystrophy (DMD) based on evidence that they improve muscle strength, improve timed motor function, delay loss of ambulation, improve pulmonary function, reduce the need for scoliosis surgery, delay onset of cardiomyopathy, and increase survival. Both have been used off-label for many years (choice dependent on patient preference, cost, and geographic location) before FDA approval of deflazacort for DMD in 2017. In this review, we compare deflazacort and prednisone/prednisolone in terms of their key pharmacological features, relative efficacy, and safety profiles in patients with DMD. Differentiating features include lipid solubility, pharmacokinetics, changes in gene expression profiles, affinity for the mineralocorticoid receptor, and impact on glucose metabolism. Evidence from randomized clinical trials, prospective studies, meta-analyses, and post-hoc analyses suggests that patients receiving deflazacort experience similar or slower rates of functional decline compared with those receiving prednisone/prednisolone. Regarding side effects, weight gain and behavior side effects appear to be greater with prednisone/prednisolone than with deflazacort, whereas bone health, growth parameters, and cataracts appear worse with deflazacort.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398085PMC
http://dx.doi.org/10.3233/JND-210776DOI Listing

Publication Analysis

Top Keywords

duchenne muscular
8
muscular dystrophy
8
deflazacort prednisone/prednisolone
8
side effects
8
deflazacort
6
comparing deflazacort
4
deflazacort prednisone
4
prednisone duchenne
4
dystrophy deflazacort
4
prednisone/prednisolone
4

Similar Publications

Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.

Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.

View Article and Find Full Text PDF

Pizuglanstat is a novel hematopoietic prostaglandin D synthase inhibitor and investigational treatment for Duchenne muscular dystrophy. This Phase 1 mass balance study aimed to characterize the absorption, metabolism, and excretion of carbon-14 (C)-labeled pizuglanstat in healthy adults (ClinicalTrials.gov, NCT04825431).

View Article and Find Full Text PDF

Bone measurements interact with phenotypic measures in canine Duchenne muscular dystrophy.

Front Vet Sci

January 2025

Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States.

Duchenne muscular dystrophy (DMD) is an X-linked muscle disease with weakness, loss of ambulation, and premature death. DMD patients have reduced bone health, including decreased femur length (FL), density, and fractures. The mouse model has paradoxically greater FL, density, and strength, positively correlating with muscle mass.

View Article and Find Full Text PDF

Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!