In type 2 diabetes, dyslipidemia and increased serum free fatty acids (FFAs) exacerbate the development of the disease through a negative effect on insulin secretion. Adipose-derived mesenchymal stem cells (AdMSCs) play a key role in regenerative medicine, and these cells can potentially be applied as novel therapeutic resources in the treatment of diabetes. In this study, AdMSCs were treated with diabetic or nondiabetic serum FFAs isolated from women of menopausal age. Serum FFAs were analyzed using gas-liquid chromatography. The expression level of the stemness markers CD49e and CD90 and the Wnt signaling target genes Axin-2 and c-Myc were evaluated using real-time PCR. The proliferation rate and colony formation were also assessed using a BrdU assay and crystal violet staining, respectively. The level of glutathione was assessed using cell fluorescence staining. Compared to nondiabetic serum, diabetic serum contained a higher percentage of oleate (1.5-fold, p < 0.01). In comparison with nondiabetic FFAs, diabetic FFAs demonstrated decreasing effects on the expression of CD90 (-51%, p < 0.001) and c-Myc (-48%, p < 0.05), and proliferation rate (-35%, p < 0.001), colony formation capacity (-50%, p < 0.01), and GSH levels (-62%, p < 0.05). The negative effect of the FFAs of diabetic serum on the stemness characteristics may impair the regenerative capabilities of AdMSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.30270DOI Listing

Publication Analysis

Top Keywords

fatty acids
8
diabetic serum
8
adipose-derived mesenchymal
8
mesenchymal stem
8
stem cells
8
nondiabetic serum
8
serum ffas
8
serum
6
acids type
4
type diabetic
4

Similar Publications

is a putative producer of polyunsaturated fatty acids in the gut soil of the composting earthworm .

Appl Environ Microbiol

January 2025

Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.

View Article and Find Full Text PDF

Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.

View Article and Find Full Text PDF

Background: Association between dietary factors and the risk of developing inflammatory bowel disease (IBD) has been studied extensively. However, identification of deleterious dietary patterns merits further study.

Aim: To investigate the risk of developing Crohn's disease (CD) and ulcerative colitis (UC) according to the inflammatory score of the diet (ISD) in the multinational European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

View Article and Find Full Text PDF

Influence of gut bacteria on type 2 diabetes: Mechanisms and therapeutic strategy.

World J Diabetes

January 2025

College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, Yunnan Province, China.

The onset and progression of type 2 diabetes mellitus (T2DM) are strongly associated with imbalances in gut bacteria, making the gut microbiome a new potential therapeutic focus. This commentary examines the recent publication in . The article explores the association between T2DM and gut microbiota, with a focus on the pathophysiological changes related to dysbiosis.

View Article and Find Full Text PDF

Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!