Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Linen has been a significant material for textile packaging. Thus, the application of the simple spray-coating method to coat linen fibers with a flame-retardant, antimicrobial, hydrophobic, and anticounterfeiting luminescent nanocomposite is an innovative technique. In this new approach, the ecologically benign room-temperature vulcanizing (RTV) silicone rubber was employed to immobilize the environmentally friendly Exolit AP 422 (Ex) and lanthanide-doped strontium aluminum oxide (RESAO) nanoscale particles onto the linen fibrous surface. Both morphological properties and elemental compositions of RESAO and treated fabrics were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), wavelength-dispersive X-ray fluorescence (WD-XRF), Fourier transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). In the fire resistance test, the treated linen fabrics produced a char layer, giving them the property of self-extinguishing. Furthermore, the coated linen samples' fire-retardant efficacy remained intact after 35 washing cycles. As the concentration of RESAO increased, so did the treated linen superhydrophobicity. Upon excitation at 366 nm, an emission band of 519 nm was generated from a colorless luminescent film deposited onto the linen surface. The coated linen displayed a luminescent activity by changing color from off-white beneath daylight to green beneath UV source, which was proved by CIE Lab parameters and photoluminescence spectral analysis. The photoluminescence effect was identified in the treated linen as reported by emission, excitation, and decay time spectral analysis. The comfort properties of coated linen fabrics were measured to assess their mechanical and comfort features. The treated linen exhibited excellent UV shielding and improved antimicrobial performance. The current simple strategy could be useful for large-scale production of multifunctional smart textiles such as packaging textiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202256 | PMC |
http://dx.doi.org/10.1021/acsomega.2c01161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!