Unmodified (UN), acid-treated (AT) and microwave-acid-treated (MAT) activated carbons were optimized for their solute removal efficacies by adjusting feed mixture compositions and process conditions. Acetaminophen, benzotriazole, and caffeine were used either individually or as binary/ternary mixtures in this study. The process conditions considered were the pH, adsorbent dosage, and type of adsorbent. Experimental responses such as total adsorbent loading ( ) and total percentage removal (PR) were fitted with empirical models that had high adjusted (>0.95), insignificant lack of fit (-value > 0.22), and high model predictive (>0.93). Mixture compositions of the feed were found to interact significantly not only among themselves but with process variables as well. Hence, adsorption optimization must simultaneously consider mixture as well as process variables. The conventional response surface methodology for mixtures, termed as ridge analysis, optimizes mixture compositions at specified values of process variables. An improved steepest ascent method which considers mixture and process variables simultaneously was developed in this work. This could track the path of steepest ascent toward globally optimal settings, from any arbitrary starting point within the design space. For the chosen adsorbent, optimal settings for feed mixture compositions and pH were found to change along this steepest ascent path. The feed compositions, pH, and adsorbent dosage identified for maximum adsorbent utilization were usually quite different from those identified for maximum total percentage removal. When both these objectives were optimized together, the most favorable compromise solutions for and PR were, respectively, 264.1 mg/g and 43.4% for UN, 294.9 mg/g and 52.5% for AT, and 336.6 mg/g and 55.9% for MAT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202268 | PMC |
http://dx.doi.org/10.1021/acsomega.2c01284 | DOI Listing |
PLoS One
January 2025
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America.
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.
View Article and Find Full Text PDFEnviron Technol
February 2025
Technology Institute, University of Passo Fundo, Passo Fundo, RS, Brazil.
Food waste offers a potential source for bioethanol production, but productivity depends on the chemical composition of the raw materials and the processes involved. However, assessment of the environmental sustainability of these processes is often absent and can be carried out using the Life Cycle Assessment (LCA) methodology. This study aimed to perform an LCA on bioethanol production from mixtures of different wastes, including tubers, fruits, and processed foods, focusing on the gate-to-gate phase.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.
Membrane properties are determined in part by lipid composition, and cholesterol plays a large role in determining these properties. Cellular membranes show a diverse range of cholesterol compositions, the effects of which include alterations to cellular biomechanics, lipid raft formation, membrane fusion, signaling pathways, metabolism, pharmaceutical therapeutic efficacy, and disease onset. In addition, cholesterol plays an important role in non-cellular membranes, with its concentration in the skin lipid matrix being implicated in several skin diseases.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Environmental Science, Stockholm University, Stockholm 10691, Sweden.
The complex and dynamic nature of airborne fine particulate matter (PM) has hindered understanding of its chemical composition, sources, and toxic effects. In the first steps of a larger study, here, we aimed to elucidate relationships between source regions, ambient conditions, and the chemical composition in water extracts of PM samples ( = 85) collected over 16 months at an observatory in the Yellow Sea. In each extract, we quantified elements and major ions and profiled the complex mixtures of organic compounds by nontarget mass spectrometry.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Propidium monoazide (PMA) is a dye that distinguishes between live and dead cells in molecular assays like the Polymerase Chain Reaction (PCR). It works by cross-linking to the DNA of cells that have compromised membranes or extracellular DNA upon photoactivation, making the DNA inaccessible for amplification. Currently, PMA is used to detect viable pathogens and alleviate systemic bias in the microbiome analysis of samples using 16S rRNA gene sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!