Paraspinal muscles are vital to the functioning of the spine. Changes in muscle physiological cross-sectional area significantly affect spinal loading, but the importance of other muscle biomechanical properties remains unclear. This study explored the changes in spinal loading due to variation in five muscle biomechanical properties: passive stiffness, slack sarcomere length (SSL), sarcomere length, specific tension, and pennation angle. An enhanced version of a musculoskeletal simulation model of the thoracolumbar spine with 210 muscle fascicles was used for this study and its predictions were validated for several tasks and multiple postures. Ranges of physiologically realistic values were selected for all five muscle parameters and their influence on L4-L5 intradiscal pressure (IDP) was investigated in standing and 36° flexion. We observed large changes in IDP due to changes in passive stiffness, SSL, sarcomere length, and specific tension, often with interesting interplays between the parameters. For example, for upright standing, a change in stiffness value from one tenth to 10 times the baseline value increased the IDP only by 91% for the baseline model but by 945% when SSL was 0.4 μm shorter. Shorter SSL values and higher stiffnesses led to the largest increases in IDP. More changes were evident in flexion, as sarcomere lengths were longer in that posture and thus the passive curve is more influential. Our results highlight the importance of the muscle force-length curve and the parameters associated with it and motivate further experimental studies on measurement of those properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201424PMC
http://dx.doi.org/10.3389/fbioe.2022.852201DOI Listing

Publication Analysis

Top Keywords

biomechanical properties
12
sarcomere length
12
paraspinal muscles
8
musculoskeletal simulation
8
spinal loading
8
muscle biomechanical
8
passive stiffness
8
ssl sarcomere
8
length specific
8
specific tension
8

Similar Publications

Article Synopsis
  • The study examines how deep learning can compare gait cycle time series from healthy children assessed in two different labs using similar protocols.
  • Researchers used a ResNet-based model that effectively identified the source of each dataset with high accuracy by analyzing various gait parameters.
  • The findings highlight the need for standardized protocols and effective data pre-processing to improve the consistency and applicability of machine learning models in clinical environments.
View Article and Find Full Text PDF

Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use.

Int J Mol Sci

December 2024

Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.

Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).

View Article and Find Full Text PDF

: We aimed to predict patient-specific rupture risks and growth behaviors in abdominal aortic aneurysm (AAA) patients using biomechanical evaluation with finite element analysis to establish an additional AAA repair threshold besides diameter and sex. : A total of 1219 patients treated between 2005 and 2024 (conservative and repaired AAAs) were screened for a pseudo-prospective single-center study. A total of 15 ruptured (rAAA) vs.

View Article and Find Full Text PDF

Modified basalt microfiber-reinforced polyurethane elastomer composites were prepared by a semi-prepolymer method with two different silane coupling agents (KH550 and KH560) in this study. Infrared spectroscopy was used to quantify the degree of microphase separation and analyze the formation of hydrogen bonding in polyurethane. The interfacial surface and the morphology of fibers and composites from tensile fracture were examined by a scanning electron microscope.

View Article and Find Full Text PDF
Article Synopsis
  • Scoliosis is identified through Cobb's angle, and this study aims to create a digital twin of the spine to analyze biomechanical stresses and disc degeneration related to idiopathic scoliosis using patient-specific data.
  • A 3D computational model was developed that modifies intervertebral disc properties based on radiological measurements, validated by comparing with patient images; finite element analysis clarified the impact of deformity on spinal biomechanics.
  • The results showed that the model accurately represented thoracic scoliosis and revealed that disc strain increases near the apex, with "type-C" curves at higher risk for herniation compared to "type-S," thereby enhancing understanding of scoliosis and aiding in treatment planning.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!