Activin A, a TGFβ superfamily member, is important for normal testis development through its actions on Sertoli cell development. Our analyses of altered activin A mouse models indicated gonocyte abnormalities, implicating activin A as a key determinant of early germline formation. Whether it acts directly or indirectly on germ cells is not understood. In humans, the fetal testis may be exposed to abnormally elevated activin A levels during preeclampsia, maternal infections, or following ingestion of certain medications. We hypothesized that this may impact fetal testis development and ultimately affect adult fertility. Germ cells from two mouse models of altered activin bioactivity were analysed. RNA-Seq of gonocytes purified from E13.5 and E15.5 KO mice (activin A subunit knockout) identified 46 and 44 differentially expressed genes (DEGs) respectively, and 45 in the E13.5 KO (inhibin alpha subunit knockout; increased activin A) gonocytes. To discern direct effects of altered activin bioactivity on germline transcripts, isolated E13.5 gonocytes were cultured for 24h with activin A or with the activin/Nodal/TGFβ inhibitor, SB431542. Gonocytes responded directly to altered signalling, with activin A promoting a more differentiated transcript profile (increased differentiation markers and ; decreased early germ cell markers and ), while SB431542 had a reciprocal effect (decreased and ; increased ). To delineate direct and indirect effects of activin A exposure on gonocytes, whole testes were cultured 48h with activin A or SB431542 and collected for histological and transcript analyses, or EdU added at the end of culture to measure germ and Sertoli cell proliferation using flow cytometry. Activin increased, and SB431542 decreased, Sertoli cell proliferation. SB431542-exposure resulted in germ cells escaping mitotic arrest. Analysis of FACS-isolated gonocytes following whole testis culture showed SB431542 increased the early germ cell marker , however there was a general reduction in the impact of altered activin A bioavailability in the normal somatic cell environment. This multifaceted approach identifies a capacity for activin A to directly influence fetal germ cell development, highlighting the potential for altered activin A levels to increase the risk of testicular pathologies that arise from impaired germline maturation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205402 | PMC |
http://dx.doi.org/10.3389/fendo.2022.896747 | DOI Listing |
iScience
January 2025
Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Sciences, School of Natural Sciences (SONS), Shiv Nadar Institution of Eminence, Delhi NCR, India.
Inhibin, β, which is also known as INHBA, encodes a protein that belongs to the Transforming Growth factor-β (TGF-β) superfamily, which plays a pivotal role in cancer. Gastrointestinal tract (GI tract) cancer refers to the cancers that develop in the colon, liver, esophagus, stomach, rectum, pancreas, and bile ducts of the digestive system. The role of INHBA in all GI tract cancers remains understudied.
View Article and Find Full Text PDFStem Cell Reports
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, 500 Main St, Cambridge, MA 02142, USA. Electronic address:
Heparan sulfate (HS) is an anionic polysaccharide generated by all animal cells, but our understanding of its roles in human pluripotent stem cell (hPSC) self-renewal and differentiation is limited. We derived HS-deficient hPSCs by disrupting the EXT1 glycosyltransferase. These EXT1 hPSCs maintain self-renewal and pluripotency under standard culture conditions that contain high levels of basic fibroblast growth factor(bFGF), a requirement for sufficient bFGF signaling in the engineered cells.
View Article and Find Full Text PDFJ Thorac Dis
November 2024
Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
Background: Acute respiratory distress syndrome (ARDS) is a complicated pathological cascade process of excessive pulmonary inflammation and alveolar epithelial cell apoptosis that results in respiratory dysfunction and failure. Some cases of ARDS can result in a more severe state of pulmonary fibrosis, referred to as postinjury lung fibrosis. The mortality and incidence rate of ARDS are high, particularly when it leads to continuing alveolar and interstitial fibrosis, which requires urgent treatment and appropriate management.
View Article and Find Full Text PDFBackground: Hereditary hemorrhagic telangiectasia (HHT) is an inherited vascular disorder characterized by arteriovenous malformations (AVMs). Loss-of-function mutations in Activin receptor-like kinase 1 (ALK1) cause type 2 HHT and knockout (KO) mice develop AVMs due to overactivation of VEGFR2/PI3K/AKT signaling pathways. However, the full spectrum of signaling alterations in mutants remains unknown and means to combat AVM formation in patients are yet to be developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!