AI Article Synopsis

  • - Deep brain stimulation (DBS), used for treating Parkinson's disease, can generate distinct EEG responses based on specific brain areas stimulated, as shown by different peaks in evoked potentials (P3 and P10) related to stimulation of the dorsolateral subthalamic nucleus and substantia nigra respectively.
  • - The study aimed to explore whether the new multiple independent current control (MICC) technology could produce unique neurophysiological responses by precisely adjusting the electric field between DBS contacts.
  • - Results indicated that varying the electric field location significantly affected the amplitudes of the P3 and P10 responses, suggesting that MICC could enhance the precision of DBS programming for individual patients.

Article Abstract

Background: Deep brain stimulation (DBS) is an effective neuromodulation therapy to treat people with medication-refractory Parkinson's disease (PD). However, the neural networks affected by DBS are not yet fully understood. Recent studies show that stimulating on different DBS-contacts using a single current source results in distinct EEG-based evoked potentials (EPs), with a peak at 3 ms (P3) associated with dorsolateral subthalamic nucleus stimulation and a peak at 10 ms associated with substantia nigra stimulation. Multiple independent current control (MICC) technology allows the center of the electric field to be moved in between two adjacent DBS-contacts, offering a potential advantage in spatial precision.

Objective: Determine if MICC precision targeting results in distinct neurophysiological responses recorded EEG.

Materials And Methods: We recorded cortical EPs in five hemispheres (four PD patients) using EEG whilst employing MICC to move the electric field from the most dorsal DBS-contact to the most ventral in 15 incremental steps.

Results: The center of the electric field location had a significant effect on both the P3 and P10 amplitude in all hemispheres where a peak was detected (P3, detected in 4 of 5 hemispheres, < 0.0001; P10, detected in 5 of 5 hemispheres, < 0.0001). analysis indicated furthermore that MICC technology can significantly refine the resolution of steering.

Conclusion: Using MICC to incrementally move the center of the electric field to locations between adjacent DBS-contacts resulted in significantly different neurophysiological responses that may allow further precision of the programming of individual patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203070PMC
http://dx.doi.org/10.3389/fnhum.2022.896435DOI Listing

Publication Analysis

Top Keywords

electric field
16
neurophysiological responses
12
center electric
12
multiple independent
8
independent current
8
current control
8
deep brain
8
brain stimulation
8
distinct neurophysiological
8
parkinson's disease
8

Similar Publications

Beyond the Dailey-Townes Model: Chemical Information from the Electric Field Gradient.

J Phys Chem A

January 2025

Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS - Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France.

In this work, we reexamine the Dailey-Townes model by systematically investigating the electric field gradient (EFG) in various chlorine compounds, dihalogens, and the uranyl ion (). Through the use of relativistic molecular calculations and projection analysis, we decompose the EFG expectation value in terms of atomic reference orbitals. We show how the Dailey-Townes model can be seen as an approximation to our projection analysis.

View Article and Find Full Text PDF

Purpose: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glaucoma as Mills criteria using only the pattern deviation (PD) plots. The DL model results were compared with a machine learning (ML) classifier trained on conventional VF parameters.

Methods: A total of 265 PD plots and 265 numerical datasets of Humphrey 24-2 VF images were collected from 119 normal and 146 glaucomatous eyes to train the DL models to classify the images into four groups: normal, early glaucoma, moderate glaucoma, and advanced glaucoma.

View Article and Find Full Text PDF

A carbon nanotube (CNT) composite is an effective method to improve the thermoelectricity of materials. However, the depletion layer between the CNT and thermoelectric (TE) material always decreases the contribution of CNT to the conductivity of the TE material. It is important to eliminate the depletion layer for improving the TE properties.

View Article and Find Full Text PDF

In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).

View Article and Find Full Text PDF

Rotational spectroscopy is an excellent tool for structure determination, which can provide additional insights into local electronic structure by investigating the hyperfine pattern due to nuclear quadrupole coupling. Jet-cooled molecules are good experimental benchmark targets for electronic structure calculations, as they are free of environmental effects. We report the rotational spectra of 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, and 4-chlorobenzaldehyde, including a complete experimental description of the nuclear quadrupole coupling constants, which were previously not experimentally determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!