Objective: Noisy galvanic vestibular stimulation (nGVS) is an effective method for stabilizing posture; however, little is known regarding the detailed muscle activity and joint movement in the standing posture. This study aimed to clarify the changes in the lower limb muscle activity and joint angular velocity by nGVS intervention using the simultaneous assessment method of inertial measurement units and surface electromyography (EMG).

Methods: Seventeen healthy participants were assessed for their physical responses under four conditions (standing on a firm surface with eyes-open/eyes-closed, and a foam surface with eyes-open/eyes-closed) without stimulation (baseline) and with stimulation (sham or nGVS). Noise stimuli were applied for 30 s at a level below the perceptual threshold. The body control response was evaluated using EMG activity and angular velocity of the lower limbs.

Result: Regarding the change from baseline for each parameter, there was a significant interactive effect of EMG activity in the muscle type × intervention and EMG activity and angular velocity in the condition × intervention. analysis revealed that the angular velocity was significantly decreased in the abduction-adduction direction in the standing on a foam surface with eyes-closed condition compared to that with eyes-open in the nGVS intervention.

Conclusion: Our results suggest that nGVS altered physical responses in different standing postural conditions. The present study is exploratory and therefore the evidence should be investigated in future studies specifically target those muscle activities and joint motion parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202802PMC
http://dx.doi.org/10.3389/fnhum.2022.891669DOI Listing

Publication Analysis

Top Keywords

angular velocity
16
muscle activity
12
activity joint
12
emg activity
12
noisy galvanic
8
galvanic vestibular
8
vestibular stimulation
8
physical responses
8
surface eyes-open/eyes-closed
8
foam surface
8

Similar Publications

Isokinetic strength and jumping abilities of teenage soccer players playing in different field positions.

Acta Bioeng Biomech

September 2024

Department of Biomedical Basis of Physical Culture, Faculty of Health Science and Physical Culture, Kazimierz Wielki University in Bydgoszcz, Poland.

Soccer is a sport being performed in a very dynamic manner. It requires soccer players to be able to develop high muscle force in a very short period of time. The aim of the study was to evaluate the strength and jumping abilities of young soccer players playing in different positions on the field.

View Article and Find Full Text PDF

Background: Osoto-gari is a leg throw technique that primarily relies on the hip extension to initiate the sweeping motion of the leg. A high sweep contact velocity is a crucial factor in efficiently executing this technique. While some literature emphasises whole-body coordination in the leg-sweeping action, the roles of trunk and head motion remain unclear.

View Article and Find Full Text PDF

Human postural control system has the capacity to adapt to balance-challenging perturbations. However, the characteristics and mechanisms of postural adaptation to continuous perturbation under the sensory conflicting environments remain unclear. We aimed to investigate the functional role of oscillatory coupling drive to lower-limb muscles with changes in balance control during postural adaptation under multisensory congruent and incongruent environments.

View Article and Find Full Text PDF

Insights into proprioceptive acuity assessed with a dynamic joint position reproduction task.

J Electromyogr Kinesiol

January 2025

Centro Polifunzionale di Scienze Motorie, Università degli Studi di Genova, Genoa, Italy; Department of Experimental Medicine, Section of Human Physiology, Università degli Studi di Genova, Genoa, Italy.

This study investigated proprioceptive acuity using the conventional joint position reproduction (JPR) task and a modified version, the Dynamic JPR task (D-JPR), during Concentric and Eccentric muscle contractions. Seventeen participants were recruited and received a tactile stimulus indicating the position cue at Initial (INI), Intermediate (INT), and Final (FIN) phases of movements, during either the concentric or eccentric phases. After the movement, they replicated the position where they received the stimulus.

View Article and Find Full Text PDF

Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!