Visuomotor coordination is a complex process involving several brain regions, primarily the cerebellum and motor cortex. Studies have shown inconsistent resting-state functional magnetic resonance imaging (rsfMRI) results in the cerebellar cortex and dentate nucleus of the cerebro-cerebellar connections. Echoing anatomical pathways, these two different cerebellar regions are differentially responsible for afferent and efferent cerebro-cerebellar functional connections. The aim of this study was to measure the baseline resting-state functional connectivity of different cerebellar afferent and efferent pathways and to investigate their relationship to visuomotor learning abilities. We used different cerebellar repetitive transcranial magnetic stimulation (rTMS) frequencies before a pursuit rotor task to influence visuomotor performance. Thirty-eight right-handed participants were included and randomly assigned to three different rTMS frequency groups (1 Hz, 10 Hz and sham) and underwent baseline rsfMRI and pursuit rotor task assessments. We report that greater baseline functional connectivity in the afferent cerebro-cerebellar pathways was associated with greater accuracy improvements. Interestingly, lower baseline functional connectivity in the efferent dentato-thalamo-cortical pathways was associated with greater stability in visuomotor performance, possibly associated with the inhibitory role of the dentate nucleus and caused a reduction in the efferent functional connectivity. The functional dissociation of the cerebellar cortex and dentate nucleus and their connections, suggests that distinct mechanisms in the cerebellum regarding visuomotor learning, which should be investigated in future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204583PMC
http://dx.doi.org/10.3389/fnins.2022.904564DOI Listing

Publication Analysis

Top Keywords

functional connectivity
20
afferent efferent
12
visuomotor learning
12
dentate nucleus
12
functional
8
cerebro-cerebellar functional
8
connectivity afferent
8
efferent pathways
8
resting-state functional
8
cerebellar cortex
8

Similar Publications

Purpose Muscle atrophy progresses with age. The motor function may be estimated by measuring the muscle mass; however, if muscle quality deteriorates due to an increase in connective tissue within the muscle, a decline in motor function may be missed by measuring muscle mass alone. Therefore, it is important to understand the relationship between muscle mass, muscle quality, and motor function.

View Article and Find Full Text PDF

Prevalence of Sarcopenia in Connective Tissue Disease Associated Interstitial Lung Diseases: A Single-Centre Study from India.

Mediterr J Rheumatol

December 2024

Department of Pulmonary Medicine, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India.

Background: Sarcopenia, a progressive loss of skeletal muscle strength and mass, can lead to decreased quality of life, physical disability, and mortality. Early identification of sarcopenia is crucial in limiting morbidity and mortality in connective tissue disease associated interstitial lung diseases (CTDILD) patients.

Objective: The objectives of this study are to determine the prevalence of sarcopenia in CTD-ILD patients and to correlate the severity of sarcopenia with pulmonary function tests, spirometry, and 6-minute walk test (6MWT).

View Article and Find Full Text PDF

Perinatal exposure to infection/inflammation is highly associated with neural injury, and subsequent impaired cortical growth, disturbances in neuronal connectivity, and impaired neurodevelopment. However, our understanding of the pathophysiological substrate underpinning these changes in brain structure and function is limited. The objective of this review is to summarize the growing evidence from animal trials and human cohort studies that suggest exposure to infection/ inflammation during the perinatal period promotes regional impairments in neuronal maturation and function, including loss of high-frequency electroencephalographic activity, and reduced growth and arborization of cortical dendrites and dendritic spines resulting in reduced cortical volume.

View Article and Find Full Text PDF

Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks. Transplantation of neural stem cells holds promise to repair disrupted connections. Yet, ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.

View Article and Find Full Text PDF

After spinal cord injury, impairment of the sensorimotor circuit can lead to dysfunction in the motor, sensory, proprioceptive, and autonomic nervous systems. Functional recovery is often hindered by constraints on the timing of interventions, combined with the limitations of current methods. To address these challenges, various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!