Phytochrome-Dependent Regulation of and Impacts Photomorphogenesis in .

Front Plant Sci

MSU DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.

Published: June 2022

Phytochromes (phy) are key regulators of photomorphogenesis in plants. Among the different phys characterized in higher plants (i.e., phyA to phyE), phyA and phyB primarily regulate phenotypic responses in plants under far-red (FR) and red (R) conditions, respectively. Recent findings suggest that some zinc finger proteins (ZFPs) are involved in plant light-modulated morphogenesis. However, the interaction(s) between phyA, phyB and ZFP homologs potentially involved in photomorphogenesis, as well as their phenotypic and molecular effects in Arabidopsis seedlings exposed to R and FR light remain to be elucidated fully. Prior analyses with phytochrome chromophore deficient lines indicated that expression is misregulated compared to levels in Col-0 wild type (WT). Here, we used plants with phytochrome chromophore or apoprotein (specifically phyA and phyB) deficiencies, lines with mutations in and () genes, and plants overexpressing to examine regulatory interactions between phytochromes, ZFP6, and ZFPH. Our results indicate that phytochromes are required for downregulation of and and suggest a role for light-regulated control of levels in phytochrome-dependent photomorphogenesis. Conversely, is downregulated in mutants under R light. Analyses of a double mutant confirmed disruption in photomorphogenic phenotypes, including the regulation of hypocotyl elongation in seedlings grown under FR light. In addition, and levels are transcriptionally regulated by ZFP6 and ZFPH in a gibberellic acid-dependent manner. overexpression resulted in opposite phenotypic responses to those observed in the and mutants grown in FR and R light, as well as a reduction in the rosette size of mature OX plants relative to WT under white light. Based on these observations, we provide insight into how phy and ZFPs interact to regulate specific aspects of light-dependent processes in Arabidopsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198550PMC
http://dx.doi.org/10.3389/fpls.2022.846262DOI Listing

Publication Analysis

Top Keywords

phya phyb
12
phenotypic responses
8
phytochrome chromophore
8
zfp6 zfph
8
grown light
8
plants
6
light
5
phytochrome-dependent regulation
4
regulation impacts
4
photomorphogenesis
4

Similar Publications

TANDEM ZINC-FINGER/PLUS3: a multifaceted integrator of light signaling.

Trends Plant Sci

December 2024

School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Electronic address:

TANDEM ZINC-FINGER/PLUS3 (TZP) is a nuclear-localized protein with multifaceted roles in modulating plant growth and development under diverse light conditions. The unique combination of two intrinsically disordered regions (IDRs), two zinc-fingers (ZFs), and a PLUS3 domain provide a platform for interactions with the photoreceptors phytochrome A (phyA) and phyB, light signaling components, and nucleic acids. TZP controls flowering and hypocotyl elongation by regulating gene expression and protein abundance in a blue, red, or far-red light-specific context.

View Article and Find Full Text PDF

Phytochrome alleviates cadmium toxicity by regulating gibberellic acid and brassinolide in Nicotiana tabacum.

Plant Physiol Biochem

December 2024

Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China. Electronic address:

Soil cadmium (Cd) pollution has emerged as a substantial environmental challenge globally, hampering crop production and endangering human health. Here, we found that photoreceptor phytochromes (PHYs) were involved in regulating Cd tolerance in tobacco. Compared to wildtype (WT) plants, phytochrome-defective mutants (phyA, phyB, phyAB) displayed Cd sensitive phenotype, and had a higher reactive oxygen species (ROS) accumulation and malondialdehyde content.

View Article and Find Full Text PDF

The Arabidopsis RING-Type E3 Ligase TEAR4 Controls Seed Germination by Targeting RGA for Degradation.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.

Light and DELLA proteins are central factors controlling seed germination which is critical for seed plant survival and agricultural production. However, the mechanisms underlying DELLA degradation under different light conditions during seed germination remain to be clarified. Here, it is reported that TIE1-ASSOCIATED RING-TYPE E3 LIGASE4 (TEAR4) and other TEARs redundantly promote DELLA degradation to positively regulate seed germination in Arabidopsis.

View Article and Find Full Text PDF

After the perception of vegetation proximity by phytochrome photoreceptors, shade-avoider plants initiate a set of responses known as the shade avoidance syndrome (SAS). Shade perception by the phytochrome B (phyB) photoreceptor unleashes the PHYTOCHROME INTERACTING FACTORs and initiates SAS responses. In Arabidopsis (Arabidopsis thaliana) seedlings, shade perception involves rapid and massive changes in gene expression, increases auxin production, and promotes hypocotyl elongation.

View Article and Find Full Text PDF

Phytochrome C and Low Temperature Promote the Protein Accumulation and Red-Light Signaling of Phytochrome D.

Plant Cell Physiol

November 2024

Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary.

Light affects almost every aspect of plant development. It is perceived by photoreceptors, among which phytochromes (PHY) are responsible for monitoring the red and far-red spectrum. Arabidopsis thaliana possesses five phytochrome genes (phyA-phyE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!