The effect of single i.v. injection of 110mAgNO3 (0.183 mg Ag+ X kg-1 b.wt.) in rats on the ceruloplasmin oxidase activity (Cp) and copper serum concentration was studied. It was found that Cp activity in the serum decreased to 70% of the control value and simultaneously serum copper concentration decrease to 30% of the control level. In both cases the decrease was independent on the time elapsed after silver administration. Comparing these results with those reported recently in mice Cu deficit in the rat serum was approximately twice higher. This fact is considered to be an inter-species difference. The concentration of copper in the hepatic supernatant significantly decreased (to eight times from control value) after silver injection. Only less than 10% of the total amount of Ag found in whole liver was taken up to hepatic supernatant. GPC analysis of the supernatant (Sephadex G-75) revealed that no Ag-metallothionein fraction is present. On the basis of the results obtained it was concluded that the mechanism of silver inhibition of Cp oxidase activity remains still in question.
Download full-text PDF |
Source |
---|
Cell Mol Biol Lett
January 2025
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
Isocitrate dehydrogenase 1/2 mutant (IDHmt) astrocytoma is considered a T cell-deprived tumor, yet little is known regarding the phenotypes underlying T cell exclusion. Using bulk, single nucleus and spatial RNA and protein profiling, we demonstrate that a distinct spatial organization underlies T cell confinement to the perivascular space (T cell cuff) in IDHmt astrocytoma. T cell cuffs are uniquely characterized by a high abundance of gemistocytic tumor cells (GTC) in the surrounding stroma.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada. Electronic address:
Hydrogen sulfide (HS) is an important gasotransmitter that regulates a wide range of pathophysiological processes. Higher uric acid levels are associated with an increased risk of metabolic diseases. The causal mechanism linking HS signalling and uric acid metabolism in skeletal muscles has not yet been elucidated.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan. Electronic address:
Sepsis is a life-threatening condition caused by severe infection and often complicates acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) due to the collapse of the oxidative and inflammatory balance induced by microbial pathogens, including lipopolysaccharides (LPS). In sepsis-related ARDS/ALI, NADPH oxidase (NOX) and toll-like receptors (TLR) in neutrophils and macrophages are key players in initiating oxidative and inflammatory imbalances. Although NOX and TLR activation has been linked to carbon monoxide (CO), the mechanism by which CO affects sepsis-related ARDS/ALI through NOX and TLR remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!