: visualizing powder diffraction data in pdCIF format.

J Appl Crystallogr

John de Laeter Centre, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

Published: June 2022

A description is given of the program . This program is used for visualizing powder diffraction data and models published in powder CIF format (pdCIF). In particular, support for the visualization of multi-pattern data sets, such as diffraction experiments, is provided by means of stack and surface plots. is written in Python 3 and can run wherever a compatible runtime is available. macros for the production of pdCIF files are also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172038PMC
http://dx.doi.org/10.1107/S1600576722003478DOI Listing

Publication Analysis

Top Keywords

visualizing powder
8
powder diffraction
8
diffraction data
8
data pdcif
4
pdcif format
4
format description
4
description program
4
program program
4
program visualizing
4
data models
4

Similar Publications

Using fingermark powders and lifters on pangolin scales for anti-poaching measures.

Forensic Sci Int

January 2025

King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London SE1 9NH, UK. Electronic address:

Wildlife forensics is a relatively underexplored field of science. It provides forensic evidence to support legal investigations involving wildlife crime, such as the trafficking and poaching of animals and/or their goods. The consequences of poaching are not just limited to a decline in animal welfare and include the spread of zoonotic disease, species, cultural and habitat loss, and injury of anti-poaching rangers.

View Article and Find Full Text PDF

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

The increasing demand for zinc resources and the declining availability of sulfide zinc ore reserves have made the efficient utilization of zinc oxide a topic of considerable interest. In this study, a ternary composite collector ABN (Al-BHA-NaOL system) was applied to the direct flotation of smithsonite. Micro-flotation studies showed that at pH 9, ABN exhibited better adsorption on smithsonite, achieving a recovery rate of 80.

View Article and Find Full Text PDF

A Novel Objective Method for Steel Degradation Rate Evaluation.

Materials (Basel)

December 2024

Department of Technological Engineering, Faculty of Mechanical Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Zilina, Slovakia.

This article introduces a novel approach for assessing microstructure, particularly its degradation after extended operation. The authors focus on creep processes in power plant components, highlighting the importance of diagnostics in this field. This article emphasizes the value of combining traditional microstructure observation techniques with image analysis.

View Article and Find Full Text PDF

Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!