Halide double perovskites, AMMX, offer a vast chemical space for obtaining unexplored materials with exciting properties for a wide range of applications. The photovoltaic performance of halide double perovskites has been limited due to the large and/or indirect bandgap of the presently known materials. However, their applications extend beyond outdoor photovoltaics, as halide double perovskites exhibit properties suitable for memory devices, indoor photovoltaics, X-ray detectors, light-emitting diodes, temperature and humidity sensors, photocatalysts, and many more. This Perspective highlights challenges associated with the synthesis and characterization of halide double perovskites and offers an outlook on the potential use of some of the properties exhibited by this so far underexplored class of materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199010 | PMC |
http://dx.doi.org/10.1021/acsenergylett.2c00811 | DOI Listing |
Sci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, China.
Low-dimensional lead-free metal halide perovskites are highly attractive for cutting-edge optoelectronic applications. Herein, we report a class of scandium-based double perovskite crystals comprising antimony dopants that can generate multiexcitonic emissions in the ultraviolet, blue, and yellow spectral regions. Owing to the zero-dimensional nature of the crystal lattice that minimizes energy crosstalk, different excitonic states in the crystals can be selectively excited by ultraviolet light, X-ray irradiation, and mechanical action, enabling dynamic control of steady/transient-state spectral features by modulating the excitation modes.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2024
Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH.
View Article and Find Full Text PDFChemistry
December 2024
East China University of Science and Technology, School of Materials Science and Engineering, meilong Road, 200237, shanghai, CHINA.
Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.
Hybrid lead halide perovskites are promising materials for photovoltaic applications due to their exceptional optoelectronic properties. Here, we investigate the impact of Schottky defects─specifically PbI(V) and CHNHI (V) vacancies─on nonradiative recombination in CHNHPbI using time-dependent density functional theory and nonadiabatic (NA) molecular dynamics. Our results reveal that Schottky defects do not alter the fundamental bandgap or introduce trap states but instead distort the surrounding lattice, localizing the hole distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!