Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a machine learning framework (GP-NODE) for Bayesian model discovery from partial, noisy and irregular observations of nonlinear dynamical systems. The proposed method takes advantage of differentiable programming to propagate gradient information through ordinary differential equation solvers and perform Bayesian inference with respect to unknown model parameters using Hamiltonian Monte Carlo sampling and Gaussian Process priors over the observed system states. This allows us to exploit temporal correlations in the observed data, and efficiently infer posterior distributions over plausible models with quantified uncertainty. The use of the Finnish Horseshoe as a sparsity-promoting prior for free model parameters also enables the discovery of parsimonious representations for the latent dynamics. A series of numerical studies is presented to demonstrate the effectiveness of the proposed GP-NODE method including predator-prey systems, systems biology and a 50-dimensional human motion dynamical system. This article is part of the theme issue 'Data-driven prediction in dynamical systems'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2021.0201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!