Significant increases in litter size within commercial swine production over the past decades have led to increases in preweaning piglet mortality due to increase within-litter birthweight variation, typically due to mortality of the smallest littermate piglets. Therefore, identifying mechanisms to reduce variation in placental development and subsequent fetal growth are critical to normalizing birthweight variation and improving piglet survivability in high-producing commercial pigs. A major contributing factor to induction of within-litter variation occurs during the peri-implantation period as the pig blastocyst elongates from spherical to filamentous morphology in a short period of time and rapidly begins superficial implantation. During this period, there is significant within-litter variation in the timing and extent of elongation among littermates. As a result, delays and deficiencies in conceptus elongation not only contribute directly to early embryonic mortality, but also influence subsequent within-litter birthweight variation. This study will highlight key aspects of conceptus elongation and provide some recent evidence pertaining to specific mechanisms from -omics studies (i.e., metabolomics of the uterine environment and transcriptomics of the conceptus) that may specifically regulate the initiation of conceptus elongation to identify potential factors to reduce within-litter variation and improve piglet survivability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.23623 | DOI Listing |
Biol Reprod
January 2025
Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA.
The bovine conceptus elongates near Day 16 of development and releases interferon-tau (IFNT), disrupting the endometrial luteolytic mechanism to sustain luteal P4 and pregnancy. Conceptus factors other than IFNT modify local endometrial activities to support pregnancy; however, the microenvironment is largely uncharacterized. We utilized a bovine conceptus-endometrial culture system to elucidate the microenvironment in the form of RNA and protein.
View Article and Find Full Text PDFBiol Reprod
November 2024
ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland.
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation.
View Article and Find Full Text PDFBiol Reprod
October 2024
USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA.
Antral Follicle Count (AFC) and anti-Müllerian hormone (AMH) concentrations are reflective for ovarian reserve and have been associated with improved reproductive performance in cattle. Key events for regulation of uterine receptivity are orchestrated by progesterone. As progesterone concentrations are greater in animals with high than low AFC, we tested the hypothesis, if the resulting improved uterine environment will lead to improved conceptus elongation and endometrial response to interferon tau.
View Article and Find Full Text PDFBMC Vet Res
September 2024
Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, 22381, Sweden.
Background: This study aimed to identify the roles of L-tryptophan (Trp) and its rate-limiting enzymes on the receptivity of bovine endometrial epithelial cells. Real-time PCR was conducted to analyze the differential expression of genes between different groups of bovine endometrial epithelial cells. Western blot was performed to detect Cyclooxygenase-2 (COX2) expression after treatment with Trp or kynurenine (the main metabolites of Trp).
View Article and Find Full Text PDFMol Reprod Dev
August 2024
Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
In many mammals, including ruminants, pregnancy requires pregnancy recognition signaling molecules secreted by the conceptus; however, the mechanism underlying pregnancy establishment in cattle remains unknown. Trophoblastic vesicles (TVs) are artificially produced from the extraembryonic tissues of the elongating conceptus and may be useful tools for understanding conception. This study investigated the morphological and functional properties of TVs in comparison to those of intact conceptuses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!