In this study, we used bioinformatic tools to analyze the 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR) genes from Glycyrrhiza uralensis, Artemisia annua, and Arabidopsis thaliana. The results indicated that GuHMGR and AaHMGR contained two transmembrane regions while AtHMGR had three transmembrane regions. GuHMGR, AaHMGR, and AtHMGR all had the active center for catalysis. Three truncated HMGR genes(tHMGRs) of G. uralensi, A. annua, and A. thaliana were respectively ligated to pYES3 vector to construct the recombinant plasmids pYES3-tGuHMGR,pYES3-tAaHMGR,and pYES3-tAtHMGR. Afterwards, the control plasmid pYES3 and the three plasmids and were respectively introduced into Saccharomyces cerevisiae Cen.pk2-1 D, which yielded strains Y0, Y1, Y2, and Y3, respectively. The content of squalene, lanosterol, and ergosterol in these strains was measured by GC-MS. The relative expression of tGuHMGR, tAaHMGR, and tAtHMGR in strains Y1, Y2, and Y3 was determined by quantitative real-time PCR. The results showed that the strain overexpressing tAaHMGR had the highest yield of squalene and the highest total yield of squalene, ergosterol, and lanosterol. The quantitative real-time PCR showed higher relative expression of tAaHMGR than tGuHMGR, consistent with the strain fermentation result. We selected a superior tHMGR by comparing the effects of different tHMGRs on the mevalonate(MVA) pathway flux in S. cerevisiae. The findings can provide a reference for the construction of S. cerevisiae strains with high yields of squalene and terpenoid precursors.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20220116.102DOI Listing

Publication Analysis

Top Keywords

pathway flux
8
guhmgr aahmgr
8
transmembrane regions
8
relative expression
8
quantitative real-time
8
real-time pcr
8
yield squalene
8
[effects thmgr
4
three
4
thmgr three
4

Similar Publications

Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.

View Article and Find Full Text PDF

Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation.

View Article and Find Full Text PDF

Systemic regulation of retinal medium-chain fatty acid oxidation repletes TCA cycle flux in oxygen-induced retinopathy.

Commun Biol

January 2025

Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA.

Activation of anaplerosis takes away glutamine from the biosynthetic pathways to the energy-producing TCA cycle. Especially, induction of hyperoxia driven anaplerosis in neurovascular tissues such as the retina during early stages of development could deplete biosynthetic precursors from newly proliferating endothelial cells impeding physiological angiogenesis and leading to vasoobliteration. Using an oxygen-induced retinopathy (OIR) mouse model, we investigated the metabolic differences between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains at system levels to understand the molecular underpinnings that potentially contribute to hyperoxia-induced vascular abnormalities in the neural retina.

View Article and Find Full Text PDF

Engineering carbon assimilation in plants.

J Integr Plant Biol

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO, is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin-Benson-Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway.

View Article and Find Full Text PDF

Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!