Rhizosphere soil microbial community and its diversity are important for the structure and functions of medicinal plant ecosystem. In this study, based on high-throughput sequencing, rhizosphere soil microbial diversity, and yield and quality of rhizome and root of Notopterygium incisum cultivated alone(control, CK) and intercropped with Vicia faba(QH) were analyzed, which is expected to lay a basis for optimization of the cultivation mode and ecological production of N. incisum. RESULTS:: showed that the rhizosphere soil bacteria of N. incisum were dominated by Proteobacteria and Bacteroides, with the relative abundance of 50.38%-51.95% and 16.36%-17.02%, respectively. Soil bacterial community at the phylum level was not significantly different between CK and QH. At the genus level, the relative abundance of MND1(3.54%), Spinstomonas(3.50%), Nitrospira(1.53%), and Rhizobacter(1.05%) was significantly higher and that of Gemmatimonas, Candidatus_Solibacter, and Bryophytes was lower in QH treatment than in the CK. The plant height, leaf length, leaf width, and petiole length of N. incisum in QH treatment was significantly increased and the underground biomass rose by 71.43% compared with those in the CK. Thus, intercropping with V. faba promoted the aboveground growth of N. incisum and improved the yield of root and rhizome. Moreover, the content of notopterol and isoimperatorin increased by 37.96% and 4.09% in QH treatment, respectively, indicating that the intercropping with V. faba boosted the accumulation of secondary metabolites in N. incisum. Pearson's correlation analysis showed that the soil bacterial community was mainly influenced by the soil factors including the content of soil available nutrients, soil organic matter, pH value, and soil water. The influence was in the order: total potassium>total nitrogen>pH>organic matter>available potassium>soil water content>available nitrogen>available phosphorus. In conclusion, the intercropping with V. faba altered soil microenvironment and also increased the yield and accumulation of secondary metabolites of N. incisum, which is a promising ecological planting model for N. incisum.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20220117.102DOI Listing

Publication Analysis

Top Keywords

rhizosphere soil
16
secondary metabolites
12
soil microbial
12
intercropping faba
12
soil
11
microbial diversity
8
incisum
8
relative abundance
8
soil bacterial
8
bacterial community
8

Similar Publications

Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.

View Article and Find Full Text PDF

Effects of continuous cropping and application of bio-organic fertilizer on photosynthetic performance, dry matter accumulation and distribution of sugar beet.

Sci Rep

January 2025

Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Zhao Ju Road Num. 22, Yu Quan District, Hohhot, 010031, China.

One of the major problem in the cultivation of sugar beets is continuous cropping obstacle in China. In order to evaluate the effects of continuous cropping year on the photosynthetic performance, dry matter accumulation, and distribution of sugar beet, this study was conducted in the 2020-2021 crop season at the Agriculture and Forestry Sciences of Ulanqab, Inner Mongolia. A split plot system arrangement with three replications was set up to carry out the field testing.

View Article and Find Full Text PDF

Glycine betaine enhances heavy metal phytoremediation via rhizosphere modulation and nitrogen metabolism in king grass-Serratia marcescens strain S27 symbiosis.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Microbe-Assisted Phytoremediation (MAP) is an eco-friendly method for remediating soil contaminated with heavy metals such as cadmium (Cd) and chromium (Cr). This study demonstrates the potential of a king grass-Serratia marcescens strain S27 (KS) co-symbiotic system to enhance heavy metal remediation. The KS symbiosis increased the biomass of king grass by 48 % and enhanced the accumulation of Cd and Cr in the whole plant by 2.

View Article and Find Full Text PDF

Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).

View Article and Find Full Text PDF

Differentiated effects and mechanisms of N-, P-, S-, and Fe-modified biochar materials for remediating Cd- and Pb-contaminated calcareous soil.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.

To investigate the remediation effects of various modified biochar materials derived from different impregnation agents on Cd- and Pb-contaminated calcareous soil, nitrogen (N-), phosphorus (P-), sulfur (S-), and iron (Fe-) modified biochar materials (NBC, PBC, SBC, FBC) were fabricated through the impregnation-pyrolysis method and employed to immobilize Pb and Cd in the calcareous soil. The characterization results showed that NBC exhibited an uneven pore size distribution and increased aromaticity, while PBC and SBC had increased pH and ash content. Pot experiments demonstrated significantly different effects of various modified biochar materials on soil immobilization and plant uptake of Cd and Pb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!