In order to accurately account for the contribution of different plasmon mediated phenomena when developing materials for applications in photothermal therapy, photovoltaics, or photocatalysis reliable, precise, and localized temperature measurements are required. In this work we applied two surface-enhanced Raman scattering (SERS) spectroscopy based methods to measure the local temperature increase due to the thermoplasmonic effect in gold and silver nanoparticles on thin polystyrene films. The first method relies on the temperature dependence of the anti-Stokes to Stokes Raman bands intensity ratio for a label Rhodamine 6G deposited on the nanostructures. We found that the method enables good measurements in the 20-60 °C temperature range but becomes less reliable at higher temperatures when the system undergoes transformations and the plasmonic response of the nanoparticles changes with heating. The second method makes use of the temperature dependent adsorption geometry of phenyl isocyanide (PIC) and a corresponding shift of ν(C≡N) vibration. The method demonstrates greater temperature sensitivity of gold nanoparticles than silver. The difference in sensing capability is related to the difference in molecular adsorption geometry of PIC on Au compared to Ag. We conclude that for universal thermometry of the nanoparticle/ thin film composite a combination of the two methods provides more precise localized temperature measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.121514 | DOI Listing |
Biometrics
January 2025
Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore.
Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduces complexity, where the correlation between drug response and genes can be shaped by numerous nongenetic factors, often exhibiting heterogeneity across diverse subpopulations. This challenge is particularly pronounced in datasets such as the International Warfarin Pharmacogenetic Consortium (IWPC), which encompasses diverse patient information from multiple nations.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
The local electric field (LEF) plays an important role in the catalytic process; however, the precise construction and manipulation of the electric field microenvironment around the active site remains a significant challenge. Here, we have developed a supramolecular strategy for the implementation of a LEF by introducing the host macrocycle 18-crown-6 (18C6) into a cobalt phthalocyanine (CoPc)-containing covalent organic framework (COF). Utilizing the supramolecular interaction between 18C6 and potassium ion (K), a locally enhanced K concentration around CoPc can be built to generate a LEF microenvironment around the catalytically active Co site.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.
Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!