A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-electrospun-electrosprayed ethyl cellulose-gelatin nanocomposite pH-sensitive membrane for food quality applications. | LitMetric

Co-electrospun-electrosprayed ethyl cellulose-gelatin nanocomposite pH-sensitive membrane for food quality applications.

Food Chem

Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur 613005, India. Electronic address:

Published: November 2022

Anthocyanin from red cabbage is an important biomolecule suitable for pH sensing due to its oxidoreduction potential that leads to a color change at various pH conditions. The pH-sensitive anthocyanin compound was extracted from red cabbage (1785 ± 235 mg/L) and encapsulated with gelatin as the wall material at the nanoscale (350 nm) through electrospraying. By using a simultaneous electrospraying and spinning process at 20 kV, nanoencapsulated anthocyanin was immobilized on ethyl cellulose (EC) nanofibers and formed as a nanocomposite membrane. The surface morphology of developed nanocomposites has shown complex nonwoven nanofiber formation and the immobilized nano encapsulates captured inside the nanofibrous membrane. The pH sensitivity was significantly stable up to 7 days of storage at room temperature. Total color difference has been observed to be statistically significant at different pH conditions of 2 to 12. Also, the application of the nanocomposite strips in pH sensing during milk spoilage was studied and reported.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.133420DOI Listing

Publication Analysis

Top Keywords

red cabbage
8
co-electrospun-electrosprayed ethyl
4
ethyl cellulose-gelatin
4
cellulose-gelatin nanocomposite
4
nanocomposite ph-sensitive
4
ph-sensitive membrane
4
membrane food
4
food quality
4
quality applications
4
applications anthocyanin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!