Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An electron holography optical system was developed for relatively high magnetic fields up to 500 mT. The objective lens worked as a magnetic field generator for the specimen and the first intermediate lens worked for imaging as one of the pair lens composed of the objective lens. Specimen images were first formed on the object plane of the second intermediate lens. Electron biprism for conventional holography was installed under the second intermediate lens. Reconstruction of phase distributions was performed by the Fourier transform method and the vector maps were used to clarify small phase modulations. By using the developed system, magnetic characteristics of hexaferrite magnets (BaFeScMgO), such as magnetic bubbles and stripe-shaped magnetic domains, were observed at smaller than 200 mT. Their magnetization structures and their interactions are demonstrated with the experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micron.2022.103306 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!