In this work, pyrrole-histidine has been designed, synthesized and, used as a novel functional monomer to fabricate a molecularly imprinted electrochemical sensor for the selective and sensitive detection of teriflunomide (TER). The molecularly imprinted thin film of electrochemical sensor was constructed by directly electropolymerization of co-polymer of pyrrole-histidine (PyHis) with pyrrole in the presence of a template, TER, on a glassy carbon electrode (GCE). After electropolymerization, the structure and morphology of the fabricated MIP sensor were characterized by Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) and its electrochemical parameters such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). The poly (pyrrole-co-pyrrole-histidine) [Poly (Py-co-PyHis)]@MIP/GCE sensor have a linear TER concentration in the of 0.1-1.0 pM with a low detection limit of 11.38 fM. The present strategy for electrochemical sensor have been also showed excellent recovery in synthetic serum samples and tablet dosage form with the recoveries 97.56% and 100.35%, respectively. The developed [Poly (Py-co-PyHis)]@MIP/GCE sensor exhibited an excellent electrochemical response for TER due to the synergistic effect of conducting polymer and molecularly imprinting techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2022.123689 | DOI Listing |
BMC Chem
January 2025
National Organization for Drug Control and Research (NODCAR), P.O.Box 29, Cairo, Egypt.
Tirofiban hydrochloride is used to inhibit platelet aggregation, which has a significant impact on the treatment of congestive heart failure the most common cause of death according to WHO. Therefore, its quantification in pharmaceutical dosage form is critical. In this work, an electrochemical method for the determination of tirofiban HCl in pharmaceutical dosage form was developed and validated.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Federal University of Uberlândia, Chemistry Institute, Uberlândia, MG, 38400-902, Brazil.
The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
Levels of CA125 are strongly associated with cervical, pancreatic, bowel and breast cancer. However, the common CA125 detection method has the disadvantages of poor repeatability, high cost, easy to be disturbed and poor stability. In this work, a COF based electrochemical immunosensor was developed for the rapid, sensitive and stable detection of CA125.
View Article and Find Full Text PDFLab Chip
January 2025
Laboratory for Electrical Instrumentation and Embedded Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
Cell cultures, organs-on-chip and microphysiological systems become increasingly relevant as models, , in drug development, disease modelling, toxicology or cancer research. It has been underlined repeatedly that culture conditions and metabolic cues have a strong or even essential influence on the reproducibility and validity of such experiments but are often not appropriately measured or controlled. Here we review microsensor systems for cell metabolism for the continuous measurement of culture conditions in microfluidic and lab-on-chip platforms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!