Study of arsenic adsorption in calcareous soils: Competitive effect of phosphate, citrate, oxalate, humic acid and fulvic acid.

J Environ Manage

Northern Analytical Laboratory Services (NALS), University of Northern British Columbia (UNBC), Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Canada.

Published: September 2022

Arsenic (As) bio-availability in the soil is influenced by different organic and inorganic anions. In the present study, the effects of various competitive agents, including phosphate, citrate, oxalate, humic acid (HA), and fulvic acid (FA), on the adsorption of As in calcareous soils were investigated. The results revealed the presence of phosphate, citrate, and oxalate in soil has a significant impact on the arsenic retention (adsorption) in soil which increases the As bio-availability. The negative impact of the competing anions was increased at higher concentrations. The Double Site Langmuir (DSL) isotherm was best fitted to the adsorption data, which indicates that most of the As adsorbed on the low-energy surfaces (non-specific adsorption by oxides, clays, and clay-size calcite). Accordingly, in soil 1, the DSL predicted that, due to phosphate, citrate, and oxalate competition (at a concentration of 10 mM), the adsorption capacity of the high- and low-energy surfaces decreased from 86.2 to 33.5, 82.1 and 61.3 mg/kg and from 663 to 659, 335.8, and 303.5 mg/kg, respectively, Moreover, after addition of phosphate, citrate, and oxalate to the soil-As system, the Langmuir constant of high-energy surfaces decreased from 0.686 to 0.074, 0.261, and 0.301 L/mg, respectively. No regular trend was observed for the Langmuir constant of low-energy surfaces. Similarly, in soils 2, 3, and 4, the adsorption capacities of both high- and low-energy surfaces as well as the Langmuir constant of high-energy surfaces decreased by the addition of phosphate, citrate, and oxalate to the soil-As system. HA and FA did not have a significant effect on the As adsorption behavior. Phosphate, citrate, and oxalate, as interfering oxyanions, increased the As bio-availability in the calcareous soils by decreasing the As adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115532DOI Listing

Publication Analysis

Top Keywords

phosphate citrate
28
citrate oxalate
28
low-energy surfaces
16
calcareous soils
12
surfaces decreased
12
langmuir constant
12
adsorption
9
adsorption calcareous
8
oxalate humic
8
humic acid
8

Similar Publications

Screening and identification of two novel phosphate-solubilizing strains and their role in enhancing phosphorus uptake in rice.

Front Microbiol

January 2025

Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China.

Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved.

View Article and Find Full Text PDF

Reclassification of Salinisphaera halophila Zhang et al. 2012 as a Later Heterotypic Synonym of Salinisphaera orenii Park et al. 2012.

Curr Microbiol

January 2025

Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, 3460000, Chile.

In the present study, the taxonomic position of Salinisphaera halophila (NZ_AYKF00000000) and Salinisphaera orenii (NZ_AYKH00000000) was re-evaluated. In addition, their metabolic potentials and mechanisms for mitigating stress conditions were determined. Comparisons of 16S rRNA gene sequences, analysis of the phylogenetic tree, phylogenomic tree, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) values were conducted.

View Article and Find Full Text PDF

The development and validation of an accurate, selective, and eco-friendly capillary zone electrophoretic detection (CZE) method has been presented for concurrent measurement of inorganic and organic anions including chloride, sulfate, formic acid, citric acid, acetic acid, phosphate, and glutamic acid in Human Milk Oligosaccharides (HMOs) for the first time. An electrolyte composed of an aqueous solution of benzoic acid, 16.38 mM; l-histidine, 24.

View Article and Find Full Text PDF

Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle.

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!