Aims: L-tryptophan is an essential aromatic amino acid for the growth and development of animals. Studies about enteric L-tryptophan-producing bacteria are scarce. In this report, we characterized the probiotic potential of Enterococcus casseliflavus ECB140, focusing on its L-tryptophan production abilities.
Methods And Results: ECB140 strain was isolated from the silkworm gut and can survive under strong alkaline environmental conditions. Bacterial colonization traits (motility and biofilm) were examined and showed that only ECB140 produced flagellum and strong biofilms compared with other Enterococcus strains. Comparative genome sequence analyses showed that only ECB140 possessed a complete route for L-tryptophan synthesis among all 15 strains. High-performance liquid chromatography and qRT-PCR confirmed the capability of ECB140 to produce L-tryptophan. Besides, the genome also contains the biosynthesis pathways of several other essential amino acids, such as phenylalanine, threonine, valine, leucine, isoleucine and lysine. These results indicate that ECB140 has the ability to survive passage through the gut and could act as a candidate probiotic.
Conclusions: The study describes a novel, natural silkworm gut symbiont capable of producing L-tryptophan. Enterococcus casseliflavus ECB140 physical and genomic attributes offer possibilities for its colonization and provide L-tryptophan for lepidopteran insects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.15675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!