Background: The optimal caffeine dosing in extremely premature neonates remains elusive. This study aimed to evaluate the impact of birth weight on caffeine pharmacokinetics and various dosing regimens.
Methods: In this pharmacokinetic simulation study, we generated the body weights (0-49 days of postnatal age [PNA]) of neonates <28 weeks gestational age with different birth weights (550, 750, and 1050 g). Their pharmacokinetic parameters were determined based on published pharmacokinetic models. Then, we simulated and compared the caffeine base concentration-time profiles of standard versus off-label caffeine citrate dose regimens.
Results: The half-life decreased and the weight-adjusted clearance increased more significantly in neonates with lower birth weights, resulting in lower caffeine plasma concentrations. The neonate with the lowest birth weight did not achieve a threshold trough concentration of 15 mg/L after receiving the standard dose (5 mg/kg/day), while the higher-birth-weights (≥750 g) had trough concentrations below the threshold around the second week of life. Higher caffeine doses (10 mg/kg/day) resulted in peak concentrations of <36 mg/L by 10-14 days of PNA while maintaining trough concentrations above 15 mg/L throughout the 49 days PNA.
Conclusion: Higher-than-standard caffeine dosing may be needed for extremely premature neonates, especially for those with lower birth weights.
Impact: Extremely premature neonates with a lower birth weight may require a higher weight-based caffeine dosing due to their higher weight-adjusted clearance and shorter half-lives. Not only do these extremely premature neonates have a higher risk of developing bronchopulmonary dysplasia due to their structurally underdeveloped lungs, but the low birth weight-related underdosing may further contribute to the reduced caffeine effectiveness. Higher-than-standard caffeine citrate dosing (e.g., 10 mg/kg/day maintenance dose) may be needed to further prevent bronchopulmonary dysplasia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41390-022-02172-y | DOI Listing |
J Clin Pharmacol
January 2025
Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
Obesity significantly influences drug pharmacokinetics (PK), which challenges optimal dosing. This study examines the effects of diet-and-exercise-induced weight loss on key drug-metabolizing enzymes and gastric emptying in patients with obesity, who frequently require medications for comorbidities. Participants followed a structured weight management program promoting weight loss over 3-6 months and were not concomitantly on potential CYP inducers or inhibitors.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
Background: Minimizing the duration of mechanical ventilation is one of the most important therapeutic goals during the care of preterm infants at neonatal intensive care units (NICUs). The rate of extubation failure among preterm infants is between 16% and 40% worldwide. Numerous studies have been conducted on the assessment of extubation suitability, the optimal choice of respiratory support around extubation, and the effectiveness of medical interventions.
View Article and Find Full Text PDFLancet Microbe
December 2024
Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Germany; German Center for Infection Research, Munich Partner Site, Munich, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection, and Pandemic Research, Munich, Germany; Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. Electronic address:
Background: The broad use of bedaquiline and pretomanid as the mainstay of new regimens to combat tuberculosis is a risk due to increasing bedaquiline resistance. We aimed to assess the safety, bactericidal activity, and pharmacokinetics of BTZ-043, a first-in-class DprE1 inhibitor with strong bactericidal activity in murine models.
Methods: This open-label, dose-expansion, randomised, controlled, phase 1b/2a trial was conducted in two specialised tuberculosis sites in Cape Town, South Africa.
Pharmaceuticals (Basel)
December 2024
Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, 34700 Istanbul, Türkiye.
With increasing interest in plant-based compounds that can enhance sleep quality without the side effects of caffeine, Alpinia galanga (AG) has emerged as a promising herbal supplement for improving mental alertness. This study assessed the impact of water-soluble AG extract on sleep quality; the activity of GABAergic, glutamatergic, and serotonergic receptors; and concentrations of dopamine and serotonin in the brains of mice. The study employed two experimental models using BALB/c mice to examine the impact of pentobarbital-induced sleep and caffeine-induced insomnia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!