Objectives: To evaluate and compare image quality and radiation dose between the helical and wide-volume scans to determine the protocol that provides a lower radiation dose without loss in image quality.

Methods: The study was prospectively conducted on consented adult patients that presented for routine brain CT. Image quality and radiation dose were compared between the helical and wide-volume scans on the Toshiba 160-slice Aquilion Prime CT scanner. The volume computed tomography dose index (CTDIvol) and dose length product (DLP) for each scan mode were collected and compared. Image quality was quantitatively and qualitatively evaluated using the unenhanced brain CT images. The data were analysed using a statistical package for social sciences (SPSS) software version 20 for both the descriptive and inferential statistics. A significant difference in image quality and radiation dose between the helical and wide-volume scans was determined based on a p-value of <0.05.

Results: A total of 54 participants were included, with two groups of 27 participants. The CTDI and DLP values were significantly p < 0.05 higher in the helical scan (CTDI: 65 mGy; DLP: 1597 mGy.cm) compared to the wide-volume scan (CTDI: 54 mGy; DLP: 1133 mGy.cm). The grey and white matters show a better signal-to-noise ratio (SNR) for the helical scan. Meanwhile, the contrast-to-noise ratio (CNR) was significantly p < 0.05 higher in the wide-volume scan. The results from the visual grading methods were compared and showed superior image quality in helical over the wide-volume scan.

Conclusion: Wide-volume provides a lower dose compared to helical and therefore, could be adopted as the routine protocol for brain CT for in house dose optimisation. Where clinical conditions warrant the need for a helical scan, the protocol should be optimised in line with the as low as reasonable achievable (ALARA) principle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmir.2022.05.008DOI Listing

Publication Analysis

Top Keywords

image quality
20
radiation dose
20
quality radiation
16
helical wide-volume
16
wide-volume scans
12
computed tomography
8
dose helical
8
dose
7
quality
5
radiation
5

Similar Publications

Purpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.

View Article and Find Full Text PDF

Traumatic burst fractures of the atlas occur with axial loading of the cervical spine. Many of these injuries can be treated by nonsurgical management with external orthosis; however, cases with transverse ligament disruption or significant C1 lateral mass displacement require internal reduction and fixation. In patients with poor bone quality in the setting of osteoporosis or chronic illness, atlanto-axial fixation and reduction of the fracture can be a challenge, necessitating extension of fusion to the occiput, which significantly limits the range of motion.

View Article and Find Full Text PDF

Optimizing Low-Dose [18F]FDG-PET/CT Scans: Ensuring Quality Amid Radiotracer Availability Challenges - Insights from a Peripheral Tertiary Care Center.

Indian J Nucl Med

November 2024

Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Varanasi, India.

Background: The introduction of positron emission tomography/computed tomography (PET/CT) has significantly advanced medical imaging. In oncology, F-fluorodeoxyglucose (F-FDG) PET/CT is particularly crucial for staging, evaluating treatment response, monitoring follow-up, and planning radiotherapy. However, in resource limiting hospitals, the availability of fluorine-labeled F-FDG limits optimal scan acquisition.

View Article and Find Full Text PDF

Time-efficient HPLC Validation Methodology for the Qualitative Analysis of 68Ga PSMA-11 in Routine Clinical Usage under Isocratic Method.

Indian J Nucl Med

November 2024

Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha Cancer Hospital and Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Homi Bhabha National Institute, Varanasi, Uttar Pradesh, India.

Background: Prostate-specific membrane antigen (PSMA) has shown to be a promising agent for prostate cancer imaging under PET-CT. With the automation in radiolabeling with 68Ga, using iTG 68Ge/68Ga generator, it has helped introduce various new diagnostic agents and achieve good manufacturing practices (GMP) simultaneously. However, before any radiopharmaceutical is put into clinical usage, it should always be checked for its radiochemical purity and other quality parameters before injecting in the patient.

View Article and Find Full Text PDF

Stem fixation techniques in revision total knee arthroplasty: A systematic review and meta-analysis.

J Exp Orthop

January 2025

Department of Orthopaedic Surgery and Traumatology Città della Salute e della Scienza Turin Italy.

Purpose: This systematic review and meta-analysis aimed to compare the clinical and radiological outcomes of patients undergoing revision total knee arthroplasty (rTKA) using uncemented press-fit stems (hybrid fixation) versus cemented stems (cemented fixation). It is also examined whether cemented fixation offers any superiority over hybrid fixation regarding implant survival, clinical function, imaging analysis and complication rates.

Methods: Following the PRISMA guidelines, a systematic review and meta-analysis were conducted on five databases (Pubmed, Scopus, Embase, Medline and Cochrane).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!