The aim of this study was to infer the effects of heat stress (HS) of dams during late gestation on direct and maternal genetic parameters for pneumonia (PNEU, 112,563 observations), diarrhea (DIAR, 176,904 observations), and omphalitis (OMPH, 176,872 observations) in Holstein calves kept in large-scale co-operator herds. The genotype dataset included 41,135 SNPs from 19,247 male and female cattle. Temperature-humidity indices (THI) during the last 8 wk of pregnancy were calculated, using the climate data from the nearest public weather station for each herd. Heat load effects were considered for average weekly THI larger than 60. Phenotypically, regression coefficients of calf diseases on prenatal THI during the last 8 wk of gestation were estimated in 8 consecutive runs. The strongest detrimental effects of prenatal HS on PNEU and DIAR were identified for the last week of pregnancy (wk 1). Thus, only wk 1 was considered in ongoing genetic and genomic analyses. In an advanced model considering prenatal HS, random regression coefficients on THI in wk 1 nested within maternal genetic effects (maternal slope effects for heat load) were considered as parameters to infer maternal sensitivity in response to prenatal THI alterations. Direct heritabilities from the advanced model ranged from 0.10 (THI 60) to 0.08 (THI 74) for PNEU and were close to 0.16 for DIAR. Maternal heritabilities for PNEU increased from 0.03 to 0.10 along the THI gradient. For DIAR, the maternal heritability was largest (0.07) at the minimum THI (THI = 60) and decreased to 0.05 at THI 74. Genetic correlations smaller than 0.80 for PNEU and DIAR recorded at THI 60 with corresponding diseases at THI 74 indicated genotype by climate interactions for maternal genetic effects. Genome-wide associations studies were performed using de-regressed proofs of genotyped sires for direct genetic, maternal genetic, and maternal slope effects. Thirty suggestive and 2 significant SNPs were identified from the GWAS. Forty-three genes located close to the suggestive SNPs (±100 kb) were annotated as potential candidate genes. Three biological processes were inferred on the basis of the these genes, addressing the negative regulation of the viral life cycle, innate immune response, and protein ubiquitination. Hence, the genetics of prenatal heat stress mechanisms are associated with immune physiology and disease resistance mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2022-21804DOI Listing

Publication Analysis

Top Keywords

maternal genetic
24
genetic effects
16
thi
13
effects maternal
12
heat stress
12
maternal
11
effects
9
genetic
9
direct genetic
8
prenatal heat
8

Similar Publications

Rationale: Tobacco smoking is a well-established risk factor for idiopathic pulmonary fibrosis (IPF), yet the influence of early-life tobacco exposure on future IPF risk remains poorly understood.

Objectives: To test the hypothesis that early-life tobacco exposure may elevate the risk of developing IPF, with this effect potentially modified by genetic susceptibility to IPF and mediated through accelerated biological aging.

Methods: Using data from over 430,000 participants in the UK Biobank, we performed a prospective cohort study to examine the associations of maternal smoking around birth and age of smoking initiation with IPF risk.

View Article and Find Full Text PDF

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Meiosis is generally a fair process: each chromosome has a 50% chance of being included into each gamete. However, meiosis can become aberrant with some chromosomes having a higher chance of making it into gametes than others. Yet, why and how such systems evolve remains unclear.

View Article and Find Full Text PDF

Myoclonic reflex and non-reflex seizures in a female child with Coffin-Lowry syndrome: Clinical vignette.

Epileptic Disord

January 2025

Child Neurology and Psychiatry Unit, Dipartimento materno-infantile, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!