Peptidoglycan recognition proteins (PGRPs) belong to a member of pattern-recognition receptors (PRRs), which proposed as antibacterial protein. The present study investigated the antibacterial effect of BpPGRP5 in great blue-spotted mudskipper (Boleophthalmus pectinirostris). BpPGRP5 transcript was detected in all tested tissues with the highest expression level in spleen, and its expression was significantly upregulated in spleen, intestine, and kidney following Aeromonas veronii infection. rBpPGRP5 was found to interact with several polysaccharides and bacteria, including Gram-negative bacteria (Escherichia coli and A. veronii) and Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus). rBpPGRP5 inhibited the proliferation of E. coli, S. aureus, L. monocytogenes, and A. veronii in a Zn-dependent manner. Furthermore, in vivo studies revealed that intraperitoneal injection of rBpPGRP5 improved the survival rate of A. veronii-infected B. pectinirostris, accompanied by decreased bacterial load in the blood, kidney, intestine, and spleen. Taken together, our results indicated that BpPGRP5 is an antimicrobial protein that protects B. pectinirostris against bacterial infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2022.06.019 | DOI Listing |
BMC Biol
January 2025
School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK.
Background: The rumen fluke, Calicophoron daubneyi, is the major paramphistome species infecting ruminants within Europe. Adult flukes reside within the rumen where they are in direct contact with a unique collection of microorganisms. Here, we report a 1.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:
Archaeal peptidoglycan, a crucial component of the cell walls of Methanobacteria and Methanopyri, enhances the tightness of methanogenic cells and their resistance to known lytic enzymes and antibiotics. Although archaeal peptidoglycan endoisopeptidases (Pei) can reportedly degrade archaeal peptidoglycan, their biochemistry is still largely unknown. In this study, we investigated the activity and catalytic properties of the endoisopeptidases PeiW and PeiP using synthesized isopeptides identical to natural substrates.
View Article and Find Full Text PDFAnal Biochem
January 2025
Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, 7800003, Chile; Laboratorio de Biotecnología Vegetal y Ambiental Aplicada, Universidad Tecnológica Metropolitana, Santiago, Chile.
FtsZ is a bacterial protein that plays a crucial role in cytokinesis by forming the Z-ring. This ring acts as a scaffold to recruit other division proteins and guide the synthesis of septal peptidoglycan, which leads to cell constriction. In its native state, the FtsZ protein from Escherichia coli (EcFtsZ) is a multi-oligomer comprising dimers, trimers, tetramers, and hexamers in a dynamic self-association equilibrium depending on its concentration.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:
The acidophilic and heat-resistant characteristics of Alicyclobacillus acidoterrestris (A. acidoterrestris) pose significant challenges to fruit juice production. Traditional thermal removal methods are often ineffective against this resilient bacterium.
View Article and Find Full Text PDFPLoS Biol
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!