Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism.

J Ethnopharmacol

State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. Electronic address:

Published: October 2022

Ethnopharmacological Relevance: Forsythiae fructus, the dried fruit of Oleaceae plant Forsythia suspensa (Thunb.) Vahl, is a traditional Chinese medicine widely used in clinical practice and has a variety of pharmacological activities, such as anti-inflammation, antioxidation, and hepatoprotection.

Aim Of The Study: Phillygenin (PHI), an important fingerprint lignan component of Forsythiae fructus, has prominent hepatoprotective, anti-inflammatory and antioxidant effects. Previously, it was shown that PHI could exert anti-fibrotic effects by modulating inflammation and gut microbiota. Therefore, given the important roles of SCFAs and BAs in the development of liver fibrosis, as well as their close links with gut microbiota, we aimed to determine the protective effects of PHI on carbon tetrachloride (CCl)-induced liver fibrosis and its effects on the metabolism of SCFAs and BAs based on metabolomics.

Materials And Methods: In C57BL/6J mice, liver fibrosis model was established by intraperitoneal injection of olive oil containing 10% CCl for 4 weeks. Firstly, the mouse liver tissues were subjected to histological analysis and biochemical index assay to evaluate the protective effect of PHI on CCl-induced liver fibrosis. Subsequently, the effects of PHI on the metabolism of SCFAs and BAs in CCl-induced liver fibrosis mice were determined using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) for metabolomics analysis. Finally, the levels of the closely related proteins and genes were detected by immunohistochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) to explore the underlying mechanisms of the protective effect of PHI on CCl-induced liver fibrosis.

Results: The histological analysis and the determination of relevant biochemical indexes of liver tissues showed that PHI could attenuate CCl-induced liver fibrosis. The metabolomic analysis on SCFAs showed that PHI could promote SCFA production in the gut of mice with CCl-induced liver fibrosis, especially acetic acid, propionic acid and butyric acid. It has been reported that the increased production of SCFAs was possibly beneficial to health. The metabolomic analysis on BAs found that PHI could restore the disturbance of BA metabolism in mice with CCl-induced liver fibrosis. The immunohistochemistry and RT-qPCR results confirmed that PHI could ameliorate intestinal epithelial barrier disruption, and reverse the expression of BA metabolism-related genes in mice with CCl-induced liver fibrosis.

Conclusions: Promoting the production of SCFAs in the gut and restoring the disturbance of BA metabolism may be the potential mechanisms by which PHI alleviated CCl-induced liver fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2022.115478DOI Listing

Publication Analysis

Top Keywords

liver fibrosis
40
ccl-induced liver
36
liver
14
effects phi
12
scfas bas
12
mice ccl-induced
12
phi
11
fibrosis
10
ccl-induced
9
fibrosis effects
8

Similar Publications

Background: Helicobacter pylori bacteria colonize the gastric mucosa and contribute to the occurrence and development of gastrointestinal diseases. According to the WHO, H. pylori bacteria are considered class I carcinogen.

View Article and Find Full Text PDF

Background: Robotic hepatectomy has been increasingly adopted for the treatment of hepatocellular carcinoma (HCC). However, the ideal technique of parenchymal transection in robotic hepatectomy has been a matter of ongoing debate in literature.

Patients And Methods: In this video, we demonstrate the technique of robotic anatomical segment VIII resection using the scissor hepatectomy technique for parenchymal transection on a 75-year-old male patient with a solitary HCC lesion.

View Article and Find Full Text PDF

Tracking Liver Fibrosis with Photoacoustic Microscopy.

Radiology

January 2025

Department of Biomedical Engineering, Duke University, 100 Science Dr, Hudson Hall Annex 260, Durham, NC 27710.

View Article and Find Full Text PDF

Quantification of Vascular Remodeling and Sinusoidal Capillarization to Assess Liver Fibrosis with Photoacoustic Imaging.

Radiology

January 2025

From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.).

Background Photoacoustic microscopy (PAM) can be used to detect strong absorption from endogenous and exogenous contrast material, making it promising for detailed structural and functional imaging of hepatic sinusoids, including dynamic visualization of permeability. Purpose To evaluate whether PAM-based quantitative parameters of liver function and integrity (lacunarity, blood oxygen saturation [Sao], and Evans blue [EB] permeability) are associated with histopathologic indexes of fibrosis in a mouse model. Materials and Methods Between October 2022 and July 2023, a total of 35 male C57BL/6 mice were included in this study and received intraperitoneal injection of carbon tetrachloride to establish mouse models of progressive liver fibrosis, with seven mice in each group.

View Article and Find Full Text PDF

Hepatopulmonary syndrome (HPS) and portopulmonary hypertension (POPH) are two distinct pulmonary vascular complications seen in patients with liver disease and/or portal hypertension. HPS is characterized by disturbed gas exchange and hypoxemia because of intrapulmonary vascular dilatations. POPH is defined by pulmonary arterial hypertension, which might lead to right heart failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!