Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conductive hydrogel-based flexible electronics have attracted immense interest in wearable sensor, soft robot and human-machine interface. However, the application of hydrogels in flexible electronics is limited by the deterioration of mechanical and electrical properties due to freezing at low temperature and desiccation after long-term use. Meanwhile, flexible electronics based on hydrogel are usually not breathable, which has a great impact on wearing comfort and signal stability in long-term sensing. In this work, an adjustable porous gelatin/polypyrrole/reduction graphene oxide (Gel/PPy/rGO) organohydrogel with high breathability (14 g∙cm∙h), conductivity (5.25 S/m), mechanical flexibility, anti-freezing and long-term stability is prepared via the combination method of biological fermentation and salt-out toughening crosslinking. The sensor fabricated from the prepared porous organohydrogel exhibits excellent sensing sensitivity, fast response ability, and good endurance, which monitors both weak and intense human activities effectively like finger bending, elbow bending, walking and running, and tiny pulse beating. A pressure sensor array prepared from the porous organohydrogel detects pressure variation in 2D sensitively. Furthermore, the porous organohydrogel is utilized as flexible electrodes for the accurate collection and recognition of human physiological signals (EMG, ECG) and as an interface between human and machine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.06.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!