Interplays between non-coding RNAs and chemokines in digestive system cancers.

Biomed Pharmacother

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran. Electronic address:

Published: August 2022

Within tumors, chemokines and their cognate receptors are expressed by infiltrated leukocytes, cancerous cells, and related cells of stroma, like tumor-associated fibroblasts and tumor-associated macrophages. In malignancies, the altered expression of chemokines/chemokine receptors governs leukocyte infiltration and activation, epithelial-mesenchymal transition (EMT), cancer cell proliferation, angiogenesis, and metastasis. Non-coding RNAs (ncRNAs) contribute to multiple physiological and pathophysiological processes. Some miRNAs can exert anti-tumorigenic activity in digestive system malignancies by repressing the expression of tumor-promoting chemokines/chemokine receptors or by upregulating tumor-suppressing chemokines/chemokine receptors. However, many miRNAs exert pro-tumorigenic activity by suppressing the expression of chemokines/chemokine receptors or by upregulating tumor-promoting chemokines/chemokine receptors. LncRNA and circRNAs also exert pro- and anti-tumorigenic effects by targeting downstream miRNAs influencing the expression of tumor-promoting and tumor-suppressor chemokines/chemokine receptors. On the other side, some chemokines influence the expression of ncRNAs affecting tumor formation. The current review explains the communications between ncRNAs and chemokines/chemokine receptors in certain digestive system malignancies, such as gastric, colorectal, and pancreatic cancers and hepatocellular carcinoma to gain better insights into their basic crosstalk as well as possible therapeutic modalities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.113237DOI Listing

Publication Analysis

Top Keywords

chemokines/chemokine receptors
28
digestive system
12
non-coding rnas
8
receptors
8
expression chemokines/chemokine
8
mirnas exert
8
system malignancies
8
expression tumor-promoting
8
tumor-promoting chemokines/chemokine
8
receptors upregulating
8

Similar Publications

The multifaceted role of XCL1 in health and disease.

Protein Sci

February 2025

Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.

The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions.

View Article and Find Full Text PDF

Ferrocenyl-Substituted Curcumin Derivatives as Potential SHP-2 Inhibitors for Anticolorectal Cancer: Design, Synthesis and Evaluation.

ACS Omega

December 2024

Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.

A panel of ferrocenyl-substituted curcumin derivatives has been designed and synthesized as protein tyrosine phosphatase proto-oncogene SHP-2 inhibitors. Antiproliferative activities of the synthesized compounds were tested against colorectal cancer cell lines (including RKO, SW480, and CT26). Compound showed excellent activities against the tested cell lines with IC values of 5.

View Article and Find Full Text PDF

Pan-cancer analysis of B3GNT5 with potential implications for cancer immunotherapy and cancer stem cell stemness.

PLoS One

December 2024

Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

B3GNT5, a critical member of the β-1,3-N-acetylglucosaminyl transferase gene family involved in lactose and glycosphingolipids biosynthesis, has been documented to promote tumor-infiltrating T-cell responses. Our research utilized the Pan-Cancer dataset from The Cancer Genome Atlas (TCGA) to explore the functional role of B3GNT5. Our study demonstrated that the antibody-driven inhibition of B3GNT5 diminished T cell-mediated anti-tumor responses in both in vitro and in vivo settings.

View Article and Find Full Text PDF

Molecular regulators of chemotaxis in human hematopoietic stem cells.

Biochem Soc Trans

December 2024

Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.

Hematopoietic stem cells (HSCs), essential for lifelong blood cell regeneration, are clinically utilized to treat various hematological disorders. These cells originate in the aorta-gonad-mesonephros region, expand in the fetal liver, and mature in the bone marrow. Chemotaxis, involving gradient sensing, polarization, and migration, directs HSCs and is crucial for their homing and mobilization.

View Article and Find Full Text PDF

Objective: Copper, an essential metal element for humans, plays vital functions in cancer prognosis and immunity. SLC31A1, a high-affinity copper transporter, helps regulate copper homeostasis and has been implicated in tumor prognosis through mechanisms such as drug resistance, autophagy, ferroptosis, and cuproptosis. However, the role of SLC31A1 in breast cancer (BRCA) and its association with tumor immune infiltration has not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!