Photocatalytic oxidation degradation of inhibitory fatty acids for aged Chlorella vulgaris cultivation medium recycling.

Bioprocess Biosyst Eng

Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, No. 2 Sipailou Street, Nanjing, 210096, Jiangsu, China.

Published: July 2022

The medium used for Chlorella vulgaris cultivation exerted obvious inhibitory effects on the growth of C. vulgaris after several culture-harvest cycles. The accumulated fatty acids secreted by C. vulgaris during their growth process were expected to be the cell inhibition components. In this work, the ultraviolet-driven photocatalytic oxidation technique was applied for the degradation of microalgae cell growth inhibition components in the aged cultivation medium, and the reaction parameters were optimized. The results indicated that the photocatalytic oxidation processes using 0.5 g/L [Formula: see text] NPs as the catalyst under the aeration condition showed as high as 74.61 ± 4.60% FA degradation efficiency after 20 min illumination, and the contents of -COOH, [Formula: see text] (α) and -COO-R functional groups in the aged C. vulgaris medium were significantly reduced. In addition, the modification of the photocatalyst further improved the ability of the degradation of FA. When the modified [Formula: see text]/AC and [Formula: see text]/Ag catalysts were applied, the FA degradation rates reached as high as 92.46 ± 0.37% and 93.91 ± 1.37%, respectively. In the recycled medium treated with [Formula: see text]/AC, the cell density in the stable phase reached 96.33 ± 1.83% of that in the fresh medium as the control. In summary, the photocatalytic oxidation with the modified [Formula: see text]/AC catalyst was proposed as the efficient strategy to realize the recycling of the aged C. vulgaris cultivation medium via the degradation of the FA as the cell growth inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-022-02739-3DOI Listing

Publication Analysis

Top Keywords

photocatalytic oxidation
16
vulgaris cultivation
12
cultivation medium
12
[formula text]/ac
12
fatty acids
8
chlorella vulgaris
8
inhibition components
8
applied degradation
8
cell growth
8
[formula text]
8

Similar Publications

Density Functional Theory Insight in Photocatalytic Degradation of Dichlorvos Using Covalent Triazine Frameworks Modified by Various Oxygen-Containing Acid Groups.

Toxics

December 2024

Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.

Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox ability, have emerged as promising candidates for the photocatalytic degradation of DDVP. Nevertheless, pure CTFs lack effective oxidative active sites, resulting in elevated reaction energy barriers during the photodegradation of DDVP.

View Article and Find Full Text PDF

The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM's feasibility for photocatalytic processes.

View Article and Find Full Text PDF

Photocatalytic Degradation of Lincosamides in the Presence of Commercial Pigments: Kinetics, Intermediates, and Predicted Ecotoxicity.

Int J Mol Sci

December 2024

Department of General and Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.

Lincomycin belongs to the antibiotics commonly used in veterinary medicine. Its residues are easily spread in the environment because of its physicochemical properties, including resistance to biodegradation and good solubility in water. One of the effective methods for the removal of lincomycin from wastewater is the photocatalytic process, but it is not widely used due to the price of photocatalysts.

View Article and Find Full Text PDF

The removal of organic pollutants from water is significantly important as they have harmful effects on the ecosystem. Heterogeneous photocatalysis is a potential technique for the removal of organic pollutants from the wastewater. In this article, zinc oxide (ZnO) and samarium oxide (SmO) nanoparticles and ZnO-SmO nanocomposite (ZS) were synthesized by the co-precipitation method.

View Article and Find Full Text PDF

Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy.

Dent Mater

January 2025

Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada. Electronic address:

Objectives: This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.

Methods: Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!