A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards intelligent and integrated pest management through an AIoT-based monitoring system. | LitMetric

AI Article Synopsis

  • The main challenge in effective integrated pest management (IPM) is the lack of accurate and real-time data on crop damage due to pests and diseases.
  • To address this, the researchers developed an Intelligent and Integrated Pest and Disease Management (I PDM) system that uses edge computing devices to automatically identify major greenhouse pests and monitor environmental conditions.
  • Results showed that this system significantly aided farm managers in reducing pest populations by up to 50.7% over 1368 days, emphasizing the benefits of a data-driven approach to IPM in sustainable agriculture.

Article Abstract

Background: Main bottleneck in facilitating integrated pest management (IPM) is the unavailability of reliable and immediate crop damage data. Without sufficient insect pest and plant disease information, farm managers are unable to make proper decisions to prevent crop damage. This work aims to present how an integrated system was able to drive farm managers towards sustainable and data-driven IPM.

Results: A system called Intelligent and Integrated Pest and Disease Management (I PDM) system was developed. Edge computing devices were developed to automatically detect and recognize major greenhouse insect pests such as thrips (Frankliniella intonsa, Thrips hawaiiensis, and Thrips tabaci), and whiteflies (Bemisia argentifolii and Trialeurodes vaporariorum), to name a few, and measure environmental conditions including temperature, humidity, and light intensity, and send data to a remote server. The system has been installed in greenhouses producing tomatoes and orchids for gathering long-term spatiotemporal insect pest count and environmental data, for as long as 1368 days. The findings demonstrated that the proposed system supported the farm managers in performing IPM-related tasks. Significant yearly reductions in insect pest count as high as 50.7% were observed on the farms.

Conclusion: It was concluded that novel and efficient strategies can be achieved by using an intelligent IPM system, opening IPM to potential benefits that cannot be easily realized with a traditional IPM program. This is the first work that reports the development of an intelligent strategic model for IPM based on actual automatically collected long-term data. The work presented herein can help in encouraging farm managers, researchers, experts, and industries to work together in implementing sustainable and data-driven IPM. © 2022 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.7048DOI Listing

Publication Analysis

Top Keywords

farm managers
16
integrated pest
12
insect pest
12
intelligent integrated
8
pest management
8
crop damage
8
sustainable data-driven
8
pest count
8
system
7
pest
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!