The intracellular signaling pathways that regulate myometrial contractions can be targeted by drugs for tocolysis. The agents, 2-APB, glycyl-H-1152, and HC-067047, have been identified as inhibitors of uterine contractility and may have tocolytic potential. However, the contraction-blocking potency of these novel tocolytics was yet to be comprehensively assessed and compared to agents that have seen greater scrutiny, such as the phosphodiesterase inhibitors, aminophylline and rolipram, or the clinically used tocolytics, nifedipine and indomethacin. We determined the IC concentrations (inhibit 50% of baseline contractility) for 2-APB, glycyl-H-1152, HC-067047, aminophylline, rolipram, nifedipine, and indomethacin against spontaneous ex vivo contractions in pregnant human myometrium, and then compared their tocolytic potency. Myometrial strips obtained from term, not-in-labor women, were treated with cumulative concentrations of the contraction-blocking agents. Comprehensive dose-response curves were generated. The IC concentrations were 53 µM for 2-APB, 18.2 µM for glycyl-H-1152, 48 µM for HC-067047, 318.5 µM for aminophylline, 4.3 µM for rolipram, 10 nM for nifedipine, and 59.5 µM for indomethacin. A single treatment with each drug at the determined IC concentration was confirmed to reduce contraction performance (AUC) by approximately 50%. Of the three novel tocolytics examined, glycyl-H-1152 was the most potent inhibitor. However, of all the drugs examined, the overall order of contraction-blocking potency in decreasing order was nifedipine > rolipram > glycyl-H-1152 > HC-067047 > 2-APB > indomethacin > aminophylline. These data provide greater insight into the contraction-blocking properties of some novel tocolytics, with glycyl-H-1152, in particular, emerging as a potential novel tocolytic for preventing preterm birth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810572 | PMC |
http://dx.doi.org/10.1007/s43032-022-01000-2 | DOI Listing |
Food Chem Toxicol
January 2025
Translational Research Division, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan.
There are few reliable biomarkers for gastrointestinal toxicity, and the further identification of such markers can improve the accuracy and speed of toxicological evaluations. This study aimed to evaluate the effectiveness of several recently proposed biomarkers-plasma citrulline, fecal calprotectin, fecal bile acid, and plasma miRNAs (miR-194 and -215)-in detecting intestinal toxicity. To this end, cysteamine hydrocholoride (cysteamine, 600 or 900 mg/kg, PO), indomethacin (10 mg/kg, PO), or 2,4-Dinitrobenzenesulfonic acid hydrate (DNBS, 20 mg/kg, IR) were administered to male Wistar rats to establish models of gastric/duodenal, jejunum/ileum, or colonic damage, respectively.
View Article and Find Full Text PDFFASEB J
November 2024
Division of Pulmonary, Asthma, and Sleep Medicine, Stanford University School of Medicine, Stanford, California, USA.
Eur J Pharm Sci
January 2025
Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki 00014, Finland. Electronic address:
Improving the solubility of poorly water-soluble drugs is essential for enhancing bioavailability, formulation flexibility and reducing patient-to-patient variability. The preparation of amorphous solid dispersions (ASDs) is an attractive strategy to formulate such drugs, leading to higher apparent water solubility and therefore higher bioavailability. For such ASDs, water-soluble polymer excipients, such as poly(vinyl pyrrolidone) (PVP) or poly(vinyl pyrrolidone-co-vinyl acetate) (P(VP-co-VA)), are employed to solubilize and stabilize the drug against crystallization.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
Inflammopharmacology
December 2024
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!