Control of the beet armyworm, Spodoptera exigua depends heavily on chemical insecticides. Chlorpyrifos, an acetylcholinesterase (AChE) inhibitor, has been used in beet armyworm control for many years in China. Here we describe high level resistance to chlorpyrifos in a S. exigua strain, FX19-R, which was developed from a field-collected Chinese strain (FX) by selection with chlorpyrifos in the laboratory. FX19-R showed 1001-fold resistance to chlorpyrifos compared with the laboratory reference strain WH-S. The esterase inhibitor triphenyl phosphate (TPP) provided significant but small synergism (only 3.5-fold) for chlorpyrifos and neither of the glutathione s-transferase depletor diethyl maleate and the cytochrome P450s inhibitor piperonyl butoxide provided any detectable synergism, indicating that AChE insensitivity may play the major role in the resistance in FX19-R. Consistent with this, an amino acid substitution, F443Y (F331Y in standard Torpedo californica numbering) in AChE1 was identified in the FX19-R strain and shown to be tightly linked to chlorpyrifos resistance. Precisely homologous substitutions have been associated with organophosphate resistance in other pest species. A novel amino acid substitution, G311S (or G198S in standard numbering), was also identified in the reference strain WH-S. Recombinantly expressed AChE1 proteins carrying the G311S and F443Y substitutions were about 4.2-fold and 210-fold less sensitive to inhibition by chlorpyrifos oxon than wild-type AChE1, respectively. These results enhance our understanding of the mechanisms of chlorpyrifos resistance and provide a basis for resistance management based on monitoring the F443Y and G311S substitutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2022.105105DOI Listing

Publication Analysis

Top Keywords

chlorpyrifos resistance
12
beet armyworm
12
chlorpyrifos
9
resistance
8
armyworm spodoptera
8
spodoptera exigua
8
resistance chlorpyrifos
8
reference strain
8
strain wh-s
8
amino acid
8

Similar Publications

A new series of benzo[h]quinoline-containing heterocycles was synthesized via reactions of benzo[h]quinolinyl-2(3H)-furanone with some nitrogen bidentate nucleophiles, leading to the formation of pyridazinone, pyrrolinone, benzimidazole, and benzoxazinone derivatives. The synthesized compounds were evaluated for their insecticidal activity against Culex pipiens L. larvae.

View Article and Find Full Text PDF

Spodoptera litura (Fabricius) is a major polyphagous pest of global relevance due to the damage it causes to various crops. Chlorpyrifos (CPF) is generally used by farmers to manage S. litura, however, its widespread use has resulted in the development of insecticide resistance.

View Article and Find Full Text PDF

Genetic analysis of chlorantraniliprole resistance in the non-target bio-control agent Trichogrammachilonis.

Chemosphere

February 2025

Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan. Electronic address:

Trichogramma chilonis (Ishii) (Hymenoptera: Trichogrammatidae), a widely used egg parasitoid of lepidopteran pests in various crops, has developed very high levels of resistance when treated with chlorantraniliprole under laboratory conditions. This study assessed and characterized its mode of inheritance, degree of dominance, realized heritability (h), and cross-resistance. Toxicity bioassays were performed on T.

View Article and Find Full Text PDF

The cerambycid beetles are key players for the sustenance of biodiversity in the forest ecosystem, but in most cases are well known due to their harmfulness to agricultural and forest plants. Here, we characterized the odorant binding protein (OBP) gene family in Rhaphuma horsfieldi, emphasizing the roles of RhorOBP1 in odorant reception and insecticide sequestering. A homology-based search led to the identification of 35 RhorOBP genes with a major distribution in the Minus-C OBPs clade (21/35 genes).

View Article and Find Full Text PDF

The yellow fever mosquito, Aedes aegypti L., known for transmitting viruses causing yellow fever, dengue, chikungunya, and Zika fever, presents a substantial risk to global human health. The development of insecticide resistance in disease vectors has become a significant problem in Ae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!