In present study, control sized cadmium sulphide (CdS) quantum dots (QDs) and cellulose nanocrystals grafted polyvinylpyrrolidone (CNC-g-PVP) doped CdS QDs were synthesized via co-precipitation. The suggested pathway is fruitful in throwing out organic pollutants like methylene blue (MB) from industrial water and bactericidal applications. A series of characterization techniques were used to determine the structural, optical and morphological qualities of prepared samples. The X-ray diffraction (XRD) pattern verified hexagonal structure with no significant change occurring in the spectrum upon doping (2, 4, and 6 %). The UV-vis spectrophotometer describes blueshift in absorption pattern, resulting in an increase in band gap energy (E) upon doping. Catalytic activity (CA) against MB in basic and neutral medium demonstrated remarkable results compared with the acidic medium. Furthermore, bactericidal potential of doped sample (6 %) exhibited the significantly higher inhibition zones of 5.25 mm and 4.05 mm against Staphylococcus aureus (S. aureus) or Gram-positive (Gve) and Escherichia coli (E. coli) or Gram-negative (G-ve), respectively. In silico predictions for these doped QDs were performed against selected enzyme targets (i.e. DNA gyrase and FabI) to unveil the mystery governing these bactericidal activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.06.058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!