Effect of long-term operations on the performance of hollow fiber membrane contactor (HFMC) in recovering dissolved methane from anaerobic effluent.

Sci Total Environ

School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, Victoria 3000, Australia.

Published: October 2022

Various studies provide information about the high potential of using hollow fiber membrane contactors (HFMCs) for the recovery of dissolved methane from anaerobically treated wastewater effluent and the effects of different operating conditions on their performance. However, majority of those studies evaluated HFMCs at bench scale under favorable conditions, i.e. clean water as feed under short-term operations. This study evaluated the performance of porous HFMC and dense HFMC (in terms of dissolved methane removal efficiency and methane desorption flux) subjected to anaerobic feed during long-term operation of one month. The study will provide better understanding of the performance of HFMCs with conditions expected at large-scale wastewater treatment systems. From the results, the decrease in the performance of HFMCs and the increase in the mass transfer resistance per week under varying feed flux were determined. These relationships were utilized in a numerical model to incorporate the effect of long-term operation to evaluate the performance of upscaled HFMCs. The fit of the model with the experimental data with one month of operation was evaluated and the relative errors were 11.9 % and 15.3 % for porous HFMC and dense HFMC, respectively. Moreover, results showed that dense HFMC will provide better performance than porous HFMC if it were to be operated longer than two weeks before cleaning. The net energy for porous HFMC and dense HFMC were optimized to be 0.07 and 0.02 kWh·d, respectively. Although these results are specific to the operations and conditions used for the HFMCs in this study, the methodology established for incorporating the effect of long-term operation will be highly relevant in evaluating the performance of HFMCs in large-scale wastewater treatment applications. This will contribute to the improved recovery of dissolved methane to reduce the greenhouse gas emissions in the atmosphere and to provide additional source of clean and sustainable energy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.156601DOI Listing

Publication Analysis

Top Keywords

dissolved methane
16
porous hfmc
16
hfmc dense
16
dense hfmc
16
long-term operation
12
performance hfmcs
12
hfmc
9
performance
8
hollow fiber
8
fiber membrane
8

Similar Publications

Wetlands, as crucial terrestrial carbon reservoirs, have recently suffered severe degradation due to intense human activities. Lacustrine sediments serve as vital indicators for understanding wetland environmental changes. In the current paper, porewater samples were extracted from lacustrine sediment in three boreholes with a depth of ~75 cm in the Huixian karst wetland, southwest China, to study the chemical and dissolved inorganic carbon (DIC) evolution under anthropogenic influence.

View Article and Find Full Text PDF

Airborne observations reveal the fate of the methane from the Nord Stream pipelines.

Nat Commun

January 2025

Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.

The Nord Stream pipeline leaks on 26 September 2022 released 465 ± 20 kt of methane into the atmosphere, which is the largest recorded transient anthropogenic methane emission event. While most of the gas escaped directly to the atmosphere, a fraction dissolved in the water. So far, studies on the fate of this dissolved methane rely on pipeline volumetric estimates or spatially sparse concentration measurements and ocean models.

View Article and Find Full Text PDF

A suspected 443-486 kt of methane escaped from the Nord Stream pipelines in September 2022 at four explosion sites across three pipelines. Much of this methane rapidly escaped to the atmosphere, while an unknown amount was dissolved. We use sustained high-resolution observations of methane concentrations from autonomous gliders and an instrumented ship of opportunity to reveal the timing and spread of dissolved methane across different Baltic regions and marine protected areas.

View Article and Find Full Text PDF

Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue.

View Article and Find Full Text PDF

Interactive effects of salinity, redox, and colloids on greenhouse gas production and carbon mobility in coastal wetland soils.

PLoS One

January 2025

Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.

Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!