Bioactive prenylated phenolic compounds from the aerial parts of Glycyrrhiza uralensis.

Phytochemistry

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China. Electronic address:

Published: September 2022

In this work, a bioassay-guided fractionation strategy was used to isolate 26 phenolic compounds from the ethyl acetate partition of an ethanol extract of the aerial parts of Glycyrrhiza uralensis Fisch. ex DC. Among them, 8 prenylated phenolic compounds (glycyuralins Q-X) were described for the first time. The two enantiomers of glycyuralin Q were purified and their absolute configurations were established by ECD spectral calculations. (1″R, 2″S)-glycyuralin Q and (1″S, 2″R)-glycyuralin Q showed significant inhibitory activities against SARS-CoV-2 virus proteases 3CL with IC values of 1.5 ± 1.0 and 4.0 ± 0.3 μM, and PL with IC values of 2.4 ± 0.2 and 1.9 ± 0.1 μM, respectively. Four compounds showed potent cytotoxic activities against A549, Huh-7, and HepG2 human cancer cells with IC values ranging from 0.5 to 2.5 μM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2022.113284DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
12
prenylated phenolic
8
aerial parts
8
parts glycyrrhiza
8
glycyrrhiza uralensis
8
bioactive prenylated
4
compounds
4
compounds aerial
4
uralensis work
4
work bioassay-guided
4

Similar Publications

Introduction: Malaria caused by spp. is the most hazardous disease in the world. It is regarded as a life-threatening hematological disorder caused by parasites transferred to humans by the bite of Anopheles mosquitoes.

View Article and Find Full Text PDF

Multidrug resistance (MDR) due to the overexpression of the P-glycoprotein (P-gp) efflux pump remains a significant challenge in cancer therapy, also in breast cancer. Traditional pharmacological approaches have focused on using inhibitors to modulate P-gp expression and function. Curcumin, a polyphenol derived from Curcuma longa L.

View Article and Find Full Text PDF

Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms.

BMC Plant Biol

December 2024

Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains.

View Article and Find Full Text PDF

This study investigated the effect of various levels of OH-MWCNTs mediated seed priming on germination, growth, and biochemical responses of Indian mustard (Brassica juncea (L.) Czern. & Coss.

View Article and Find Full Text PDF

Introduction: Phenolic compounds garner interest in developing medicines, nutraceuticals, and cosmeceuticals based on natural products. The quantity of phenolic compounds in a sample is commonly determined via spectrophotometry; however, this instrumented technique is relatively laborious and time consuming and requires a large amount of reagents.

Objective: This work aimed to develop a simple, point-of-need colorimetric sensor to rapidly determine total phenolic content (TPC) in tea extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!