A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

miR-16-5p regulates aerobic glycolysis and tumorigenesis of NSCLC cells via LDH-A/lactate/NF-κB signaling. | LitMetric

miR-16-5p regulates aerobic glycolysis and tumorigenesis of NSCLC cells via LDH-A/lactate/NF-κB signaling.

Life Sci

Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India. Electronic address:

Published: September 2022

Background And Aim: Cancer cells exhibit Warburg effect, characterized by increased glycolysis followed by fermentative conversion of pyruvate to lactate. Upregulation of Lactate Dehydrogenase-A (LDH-A) is elucidated to be a dominant molecular mediator of the phenomenon. Also, microRNA (miRNA) dysregulation participates in malignant progression and dissemination in several cancers. miR-16-5p is considerably reduced in lung cancers (LC), suggesting its tumor-suppressive role. However, its role in the regulation of aerobic glycolysis remains unknown. Our study aims to identify the regulatory roles of miR-16-5p/LDH-A in Non-small cell lung cancer (NSCLC).

Main Methods: We evaluated the differential expression of LDH-A and its prognostic potential in NSCLC tissues using online databases. We performed Tissue analysis using Immunohistochemistry (IHC); In-vitro cellular analysis including transient transfection, cellular proliferation, migration, and colony forming analysis. We also performed cell survival, metabolic, cell cycle, apoptotic, ROS generation and Immunocytochemistry (ICC) analyses to identify the role of miR-16-5p/LDH-A in aerobic glycolysis and tumorigenesis of NSCLC.

Key Findings: We have identified that miR-16-5p directly targets LDH-A by binding to the complementary binding regions present in its 3'-UTR region, leading to degradation, sequentially leading to reduced lactate accumulation, glucose uptake and ATP levels. Our study also demonstrated the role of lactate accumulation in promoting NSCLC tumorigenesis via activation of NF-κB signaling pathway. However, miR-16-5p mediated targeting of LDH-A downregulates the expression of NF-κB associated genes, along with increased ROS generation, apoptosis, and cell cycle arrest.

Significance: In conclusion, our findings identify miR-16-5p/LDH-A/lactate/NF-κB as an important link between metabolism and NSCLC cells tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2022.120722DOI Listing

Publication Analysis

Top Keywords

aerobic glycolysis
12
glycolysis tumorigenesis
8
nsclc cells
8
cell cycle
8
ros generation
8
lactate accumulation
8
mir-16-5p
4
mir-16-5p regulates
4
regulates aerobic
4
glycolysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!