Plastic pollution affects all oceans and sequestration of plastics in sediments is considered its ultimate sink. We report evidence of macroplastic burial retrieved within a sediment core collected at 38 m depth at the mouth of the Mazzarrà River, a torrential river able to carry a large amount of sediment during seasonal flash-floods. Two macroplastic items were found at 68 and 255 cm below the core top (corresponding to the seafloor). Their association with terrestrial vegetal debris and their inclusion in decimetre-thick sandy/silty intervals showing coarsening- and fining-upward trends, suggest that they were deposited by hyperpycnal flows possibly triggered by flood events. These findings testify the potential of sedimentary flows in burying macroplastic at depth below the seafloor, especially in nearshore prodelta environments. Furthermore they raise the quest on the magnitude of macroplastic storage in the subsurface and on the lack of specific devices and strategies for their reckoning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2022.113819 | DOI Listing |
Int J Biol Macromol
December 2024
Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Türkiye.
Chitosan/oxidized cellulose blended film with Tribulus terrestris (T. terrestris) extract films were successfully produced by casting method. The obtained blend films were characterized by structural, mechanical, optical, permeation, antioxidant, and antimicrobial properties.
View Article and Find Full Text PDFBiopolymers
January 2025
Department of Applied Chemistry, University School of Vocational and Applied Sciences, Gautam Buddha University, Greater Noida, India.
This study investigates the enhancement of biodegradable gelatin films through the incorporation of glycerol as a plasticizer, and citric acid and zinc oxide as cross-linkers. The results showed notable improvements in various properties, including solubility, swelling behavior, thickness, pH, biodegradability, and both mechanical and thermal characteristics. The films demonstrated complete water solubility and UV-visible light absorbance in the 280-480 nm range.
View Article and Find Full Text PDFEnviron Pollut
January 2025
University of Ghent, Marine Biology Research Group (MarBiol), Krijgslaan 281 - s8, 9000, Gent, Belgium. Electronic address:
Int J Biol Macromol
January 2025
Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:
The fabrication of composite materials from lignin has attracted increasing attention to reducing the dependence of petrochemical-based resources on carbon neutrality. However, the low content of lignin in the biocomposites remains a challenge. Herein, industrial lignin is fractionated by an organic solvent to reduce its structural heterogeneity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Sciences, Complesso Universitario di Monte Sant'Angelo, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; Center for Studies on Bioinspired Agro-Environmental Technology (BAT), University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy. Electronic address:
Three different type of bioplastics were studied. They were made of amylose only, argan proteins only, while the third type contained both polymers at a 1:1 ratio. Their degradation was studied in three different type of soils fully characterized regarding their composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!