A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fungicides and bees: a review of exposure and risk. | LitMetric

Fungicides and bees: a review of exposure and risk.

Environ Int

School of Environmental Sciences, University of Guelph, 50 Stone Road East Guelph, Ontario N1G 2W1, Canada.

Published: July 2022

Fungicides account for more than 35% of the global pesticide market and their use is predicted to increase in the future. While fungicides are commonly applied during bloom when bees are likely foraging on crops, whether real-world exposure to these chemicals - alone or in combination with other stressors - constitutes a threat to the health of bees is still the subject of great uncertainty. The first step in estimating the risks of exposure to fungicides for bees is to understand how and to what extent bees are exposed to these active ingredients. Here we review the current knowledge that exists about exposure to fungicides that bees experience in the field, and link quantitative data on exposure to acute and chronic risk of lethal endpoints for honey bees (Apis mellifera). From the 702 publications we screened, 76 studies contained quantitative data on residue detections in honey bee matrices, and a further 47 provided qualitative information about exposure for a range of bee taxa through various routes. We compiled data for 90 fungicides and metabolites that have been detected in honey, beebread, pollen, beeswax, and the bodies of honey bees. The risks posed to honey bees by fungicide residues was estimated through the EPA Risk Quotient (RQ) approach. Based on residue concentrations detected in honey and pollen/beebread, none of the reported fungicides exceeded the levels of concern (LOC) set by regulatory agencies for acute risk, while 3 and 12 fungicides exceeded the European Food Safety Authority (EFSA) chronic LOC for honey bees and wild bees, respectively. When considering exposure to all bees, fungicides of most concern include many broad-spectrum systemic fungicides, as well as the widely used broad-spectrum contact fungicide chlorothalonil. In addition to providing a detailed overview of the frequency and extent of fungicide residue detections in the bee environment, we identified important research gaps and suggest future directions to move towards a more comprehensive understanding and mitigation of the risks of exposure to fungicides for bees, including synergistic risks of co-exposure to fungicides and other pesticides or pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2022.107311DOI Listing

Publication Analysis

Top Keywords

fungicides bees
16
honey bees
16
fungicides
12
bees
12
exposure fungicides
12
exposure
8
risk fungicides
8
risks exposure
8
quantitative data
8
residue detections
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!