High-Quality N-Doped Graphene with Controllable Nitrogen Bonding Configurations Derived from Ionic Liquids.

Chem Asian J

Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, P. R. China.

Published: July 2022

Controllable nitrogen doping is an effective way to regulate the electronic properties of graphene and further to facilitate its wider application. However, the synthesis of high-quality nitrogen-doped graphene (NG) with a controllable nitrogen configuration still faces considerable challenges. In this work, we present for the first time a simple method for the one-step synthesis of NG with ionic liquids (ILs) as precursors, which avoids the defects introduced by secondary doping and simplifies the process. Using 1-Ethyl-3-methylimidazolium dicyanamide (EMIM-dca) as the precursor, we obtained a high-quality NG with few defects (I /I is 0.83), nitrogen content (4.11 at%), and graphite-N proportion of 92% at a growth temperature of 1000 °C and field effect transistors (FETs) fabricated on SiO /Si substrates using the NG exhibited typical n-type semiconductor behavior in air. Our findings bring more inspiration for the controllable growth of high-quality graphitic N-doped graphene, thereby promoting its application possibilities in numerous fields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202200192DOI Listing

Publication Analysis

Top Keywords

controllable nitrogen
12
n-doped graphene
8
graphene controllable
8
ionic liquids
8
high-quality
4
high-quality n-doped
4
graphene
4
controllable
4
nitrogen
4
nitrogen bonding
4

Similar Publications

Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes.

Tree Physiol

January 2025

Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.

Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.

View Article and Find Full Text PDF

Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.

View Article and Find Full Text PDF

Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion.

Chem Commun (Camb)

January 2025

Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.

View Article and Find Full Text PDF

A powerful but frequently overlooked role of thermodynamics in environmental microbiology: inspirations from anammox.

Appl Environ Microbiol

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China.

Thermodynamics has long been applied in predicting undiscovered microorganisms or analyzing energy flows in microbial metabolism, as well as evaluating microbial impacts on global element distributions. However, further development and refinement in this interdisciplinary field are still needed. This work endeavors to develop a whole-cycle framework integrating thermodynamics with microbiological studies, focusing on representative nitrogen-transforming microorganisms.

View Article and Find Full Text PDF

Split application of phosphorus fertilizer in Chinese milk vetch-rice rotation enhanced rice yield by reshaping soil diazotrophic community.

Heliyon

December 2024

Microelement Research Center of Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei Province, 430070, China.

Chinese milk vetch (CMV) is widely recognized as the leading leguminous green manure utilized in the rice-green manure rotation system throughout southern China. While bacteria that form symbiotic relationships with CMV are responsible for fixing a significant portion of nitrogen (N) within agroecosystems. diazotrophic organisms play an essential role in the N cycle and enhance the pool of N readily accessible to plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!