Coherent extreme-ultraviolet pulses from high-harmonic generation have ample applications in attosecond science, lensless imaging, and industrial metrology. However, tailoring complex spatial amplitude, phase, and polarization properties of extreme-ultraviolet pulses is made nontrivial by the lack of efficient optical elements. Here, we have overcome this limitation through nanoengineered solid samples, which enable direct control over amplitude and phase patterns of nonlinearly generated extreme-ultraviolet pulses. We demonstrate experimental configurations and emitting structures that yield spatially patterned beam profiles, increased conversion efficiencies, and tailored polarization states. Furthermore, we use the emitted patterns to reconstruct height profiles, probe the near-field confinement in nanostructures below the diffraction limit of the fundamental radiation, and to image complex structures through coherent diffractive emission from these structures. Our results pave the way for introducing sub-fundamental-wavelength resolution imaging, direct manipulation of beams through nanoengineered samples, and metrology of nanostructures into the extreme-ultraviolet spectral range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.223902 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA).
View Article and Find Full Text PDFNat Commun
December 2024
Elettra - Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149, Trieste, Italy.
Light manipulation at the nanoscale is essential both for fundamental science and modern technology. The quest to shorter lengthscales, however, requires the use of light wavelengths beyond the visible. In particular, in the extreme ultraviolet regime these manipulation capabilities are hampered by the lack of efficient optics, especially for polarization control.
View Article and Find Full Text PDFWe report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.
View Article and Find Full Text PDFCommun Phys
December 2024
LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.
Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1-2 transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1-2 transition in singly-ionized helium (He), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself.
View Article and Find Full Text PDFNature
December 2024
Institute of Physics, University of Freiburg, Freiburg, Germany.
Tailored light-matter interactions in the strong coupling regime enable the manipulation and control of quantum systems with up to unit efficiency, with applications ranging from quantum information to photochemistry. Although strong light-matter interactions are readily induced at the valence electron level using long-wavelength radiation, comparable phenomena have been only recently observed with short wavelengths, accessing highly excited multi-electron and inner-shell electron states. However, the quantum control of strong-field processes at short wavelengths has not been possible, so far, because of the lack of pulse-shaping technologies in the extreme ultraviolet (XUV) and X-ray domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!