Zinc (Zn) is an essential trace element for human growth and its deficiency causes huge health impacts. The present study was conducted to examine the mechanisms by which Zn-deficient diet impairs reproductive function and its reversibility. Hence, SPF grade male Kunming (KM) mice were divided into three groups. Zn-normal diet group (ZN group) was provided with Zn-normal diet (Zn content = 30 mg/kg, DY19410Y) for 8 weeks. Zn-deficient diet group (ZD group) was provided with Zn-deficient diet (Zn content < 1 mg/kg, DY19401) for 8 weeks. Zn-deficient and Zn-normal diet group (ZDN group) was provided with 4 weeks Zn-deficient diet followed by 4 weeks Zn-normal diet. After 8 weeks, the overnight-fasted mice were sacrificed, and blood and organs were collected for further analysis. The results showed that Zn-deficient diet caused testicular structural disorders, decreased semen quality, imbalance in zinc homeostasis, and impaired autophagy. Semen quality, testosterone, serum Zn, testicular tissue Zn, testicular free Zn ions, alkaline phosphatase (ALP), zinc transporter 7(ZnT7), Beclin1, autophagy-related 5(ATG5), and the ratio of light chain 3(LC3) II/LC3I were significantly decreased, and ZnT4, Zrt-, Irt-like protein7 (ZIP7), and ZIP13 expression were significantly increased in ZD group mice, while the changes in above indicators caused by Zn-deficient diet were significantly alleviated in the ZDN group. It was concluded that Zn-deficient diet causes testicular structural disorders and decreased semen quality by causing imbalances in Zn homeostasis and impaired autophagy in male mice. Reproductive damages caused by Zn-deficient diet are reversible, and Zn-normal diet can alleviate them.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-022-03324-1DOI Listing

Publication Analysis

Top Keywords

zn-deficient diet
12
zn-normal diet
8
diet group
8
group group
8
group provided
8
diet
5
zinc-deficient diet
4
diet imbalance
4
imbalance zinc
4
zinc homeostasis
4

Similar Publications

Nutritional zinc (Zn) deficiency could impair immune function and affect bowel conditions. However, the mechanism by which Zn deficiency affects the immune function of gut-associated lymphoid tissue (GALT) remains unclear. We investigated how Zn deficiency affects the function of GALT and level of secretory IgA (sIgA), a key component of the intestinal immune barrier, its underlying mechanisms, and whether Zn deficiency induces bacterial translocation to the liver.

View Article and Find Full Text PDF

The study aimed to evaluate phytase effects on the availability of zinc (Zn) from corn and soybean meal feeds for broiler chickens, whereas, in parallel, Zn requirements were investigated. A total of 640 Cobb × Cobb 500 male chicks were fed a Zn-deficient diet (18.87 ± 0.

View Article and Find Full Text PDF
Article Synopsis
  • Biofortification of staple food crops with zinc is a proposed solution to prevent deficiency, yet further evidence on its health effects is still needed.
  • In a study with zinc-deficient rats, those reintroduced to control rice diets or biofortified rice showed increased body weight and plasma zinc levels compared to those that remained on a zinc-deficient diet.
  • While both the control rice and biofortified rice improved zinc status, the control rice with added zinc showed the highest levels of zinc in plasma and tissues, indicating biofortified rice is effective but may have different utilization in the body.
View Article and Find Full Text PDF

Introduction: Metabolic dysfunctions are critical in the pathology of Alzheimer's disease. Impaired zinc homeostasis, in particular, is a significant issue in this disease that has yet to be explained. Gene expression of ZIP14 in brain tissue has been previously reported.

View Article and Find Full Text PDF

Evidence from an Avian Embryo Model that Zinc-Inducible MT4 Expression Protects Mitochondrial Function Against Oxidative Stress.

J Nutr

March 2024

State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China. Electronic address:

Background: Metallothioneins (MTs) have a strong affinity for zinc (Zn) and remain at a sufficiently high level in mitochondria. As the avian embryo is highly susceptible to oxidative damage and relatively easy to manipulate in a naturally closed chamber, it is an ideal model of the effects of oxidative stress on mitochondrial function. However, the protective roles and molecular mechanisms of Zn-inducible protein expression on mitochondrial function in response to various stressors are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!